Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...
obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...
We present a nonperturbative recipe for directly computing the S-matrix in strongly-coupled QFTs. The method makes use of spectral data obtained in a Hamiltonian framework and can be applied to a wide range of theories, including potentially QCD. We demons ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...
State-of-the-art Artificial Intelligence (AI) algorithms, such as graph neural networks and recommendation systems, require floating-point computation of very large matrix multiplications over sparse data. Their execution in resource-constrained scenarios, ...
We expand Hilbert series technologies in effective field theory for the inclusion of massive particles, enabling, among other things, the enumeration of operator bases for non-linearly realized gauge theories. We find that the Higgs mechanism is manifest a ...
In this thesis we study how physical principles imposed on the S-matrix, such as Lorentz invariance, unitarity, crossing symmetry and analyticity constrain quantum field theories at the nonperturbative level. We start with a pedagogical introduction to the ...
The Transfer Matrix formalism is ubiquitous when it comes to study wave propagation in various stratified media, applications ranging from Seismology to Quantum Mechanics. A relation between variables at two points in two different layers can be establishe ...