Concept

Category of elements

In , if C is a and F:C→Set is a set-valued functor, the category el(F) of elements of F (also denoted ∫CF) is the following category: are pairs where and . Morphisms are arrows of such that . A more concise way to state this is that the category of elements of F is the ∗↓F, where ∗ is a singleton (a set with one element). The category of elements of F comes with a natural projection el(F)→C that sends an object (A, a) to A, and an arrow (A,a)→(B,b) to its underlying arrow in C. In some texts (e.g. Mac Lane, Moerdijk) the category of elements is used for presheaves. We state it explicitly for completeness. If P∈Ĉ:=SetCop is a , the category of elements of P (again denoted by el(P), or, to make the distinction to the above definition clear, ∫C P = ∫CopP) is the following category: Objects are pairs where and . Morphisms are arrows of such that . As one sees, the direction of the arrows is reversed. One can, once again, state this definition in a more concise manner: the category just defined is nothing but (∗↓P)op. Consequentially, in the spirit of adding a "co" in front of the name for a construction to denote its opposite, one should rather call this category the category of coelements of P. For C, this construction can be extended into a functor ∫C from Ĉ to Cat, the . In fact, using the Yoneda lemma one can show that ∫C P≅y↓P, where y:C→Ĉ is the Yoneda embedding. This isomorphism is natural in P and thus the functor ∫C is naturally isomorphic to y↓–:Ĉ→Cat. Given a O and a functor, also called an algebra, A:O→Set, one obtains a new operad, called the category of elements and denoted ∫OA, generalizing the above story for categories. It has the following description: Objects are pairs where and .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.