Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
On rencontre en mathématiques de nombreuses propriétés universelles. Le formalisme des catégories permet d'exprimer ces propriétés de façon très simple. Soit une catégorie localement petite et F un foncteur contravariant, respectivement covariant, de dans Ens (catégorie des ensembles). On dit que F est représentable s'il existe un objet X de tel que F soit isomorphe au foncteur , respectivement au foncteur . Les transformations naturelles de dans F correspondent bijectivement aux éléments de . Ainsi, on dit que le foncteur F est représenté par (où est un élément de F(X)) lorsque est un isomorphisme de foncteur. Somme Soit une catégorie, A et B deux objets de . On considère le foncteur de dans Ens qui à X associe . Représenter ce foncteur correspond à la propriété universelle de la somme. Module libre, groupe libre, groupe abélien libre, monoïde libre, polynômes. Soit I un ensemble et A un anneau commutatif. Le foncteur de la catégorie des A-module dans Ens (respectivement catégorie des groupes, des groupes commutatifs, des monoîdes, des A-algèbre) qui à un A-module (respectivement toute la ribambelle) associe est représentable. On obtient le A-module libre , respectivement, le groupe libre de base I, le groupe commutatif , le monoïde libre des mots basé sur l'alphabet I, l'algèbre des polynômes dont I est l'ensemble des indéterminées. Complété Soit E un espace métrique. Le foncteur de la catégorie des espaces métriques complets dans Ens qui à un espace métrique complet X associe Hom(E,X) est représenté par le complété de E. Compactifié de Stone-Čech Soit E un espace topologique. Le foncteur de la catégorie des espaces topologiques compacts dans Ens qui à un espace compact X associe Hom(E,X) est représenté par le compactifié de Stone-Čech de E. Produit tensoriel Soit A un anneau commutatif unitaire et E et F deux A-modules. Le produit tensoriel de E et F représente le foncteur qui à un A-module G associe l'ensemble des applications bilinéaires de dans G. Produit Soit une catégorie, A et B deux objets de .