Concept

Groupe de Prüfer

Résumé
En mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier. Nous dirons qu'un groupe G est un groupe de Prüfer s'il existe un nombre premier p tel que G soit un p-groupe de Prüfer. Les p-groupes de Prüfer sont ainsi nommés en l'honneur du mathématicien Heinz Prüfer. Soient p un nombre premier et G un groupe. Chacune des cinq propriétés suivantes équivaut à ce que G soit un p-groupe de Prüfer (et chacune de ces propriétés peut donc servir de définition aux p-groupes de Prüfer) : a) G est isomorphe au quotient où désigne le sous-groupe de (Q, +) formé par les nombres de la forme , avec . Justification. L'homomorphisme est surjectif et admet pour noyau. b) G est isomorphe à un quotient F/R, où F est un groupe abélien libre (c'est-à-dire un Z-module libre) admettant une base infinie dénombrable et R le sous-groupe de F engendré par . c) G admet une présentation Justification. Soient L un groupe libre (non abélien) admettant une base infinie dénombrable et S le sous-groupe normal de L engendré par . Pour tout nombre naturel i, soit l'image canonique de dans L/S. Il est clair que, sur deux , il y en a toujours un qui est puissance de l'autre, donc les commutent entre eux. Puisqu'ils engendrent L/S, L/S est donc abélien, autrement dit S contient le groupe dérivé D(L) de L. Dès lors, d'après le troisième théorème d'isomorphisme, L/S est isomorphe à (L/D(L))/(S/D(L)). Or L/D(L) est un groupe abélien libre (comme groupe abélien) admettant comme base les images dans L/D(L) des éléments , et S/D(L) est le sous-groupe de L/D(L) engendré par . On conclut à l'aide du point b). d) G admet une famille génératrice telle que , et pour tout .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.