The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
This course provides an introduction to the theory of measures and integration on abstract measure spaces.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
Learn the basis of Lebesgue integration and Fourier analysis
This is an introductory course in ergodic theory, providing a comprehensive overlook over the main aspects and applications of this field.
Présentation des bases des études d'impact, du contexte et des outils d'évaluation de chacun des sujets et des chapitres. Illustration par de nombreux cas réels, et par un travail de groupe. Discussio
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor