L'épigénétique (mot-valise de épigenèse et génétique) est la discipline de la biologie qui étudie la nature des mécanismes modifiant de manière réversible, transmissible (lors des divisions cellulaires) et adaptative l'expression des gènes sans en changer la séquence nucléotidique (ADN). Alors que la génétique correspond à l’étude des gènes, l’épigénétique s’intéresse à une « couche » d’informations complémentaires qui définit comment ces gènes sont susceptibles d'être utilisés par une cellule.
Dans l'histoire de ce sujet d'étude, l'épigénétique est d'abord mise en évidence par la différenciation cellulaire, puisque toutes les cellules d'un organisme multicellulaire ont le même patrimoine génétique mais l'expriment de façon très différente selon le tissu auquel elles appartiennent. Puis ce sont les possibilités d'évolution d'un même œuf en mâle ou femelle chez les tortues, en reine ou ouvrière chez les abeilles, qui prouvent que des mécanismes peuvent lier des facteurs environnementaux et l'expression du patrimoine génétique.
En matière d'évolution, l'épigénétique permet d'expliquer comment des traits peuvent être acquis, éventuellement transmis d'une génération à l'autre, ou encore perdus après avoir été hérités. La mise en lumière récente de ces moyens épigénétiques d'adaptation d'une espèce à son environnement est, selon Joël de Rosnay en 2011, « la grande révolution de la biologie de ces cinq dernières années », car elle montre que, dans certains cas, notre comportement agit sur l'expression de nos gènes. Elle explique aussi le polyphénisme, par exemple les changements de couleur en fonction des saisons (tel le renard polaire qui devient blanc en hiver).
L'épigénétique a des applications possibles en médecine, avec des perspectives thérapeutiques nouvelles notamment à l'aide d'« épi-médicaments », mais aussi en biologie du développement, agronomie ou nutrition.
Par exemple, une même larve d'abeille deviendra une reine ou une ouvrière en fonction de la façon dont elle est nourrie, et un même œuf de tortue peut éclore en mâle ou femelle en fonction de la température.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
The course addresses methods/technologies to study how nutrition affects biological and pathophysiological processes. It provides an overview of molecular phenotyping of individuals and key aspects to
On dit d'un gène qu'il est soumis à l'empreinte parentale lorsque, chez les organismes diploïdes, la copie héritée de la mère et la copie héritée du père ne sont pas exprimées de la même manière. En règle générale, l'une des deux copies du gène est totalement éteinte alors que l'autre est active . Les gènes soumis à l'empreinte parentale sont essentiellement impliqués dans le développement. Aujourd'hui on ne connait des gènes soumis à l'empreinte que chez les mammifères et les plantes à fleur.
vignette|Grains de maïs dont la pigmentation a été modifiée par un élément transposable. Un élément transposable, appelé aussi transposon ou gène sauteur est une séquence d'ADN capable de se déplacer de manière autonome dans un génome, par un mécanisme appelé transposition. Cette transposition est rendue possible sous l'effet d'une enzyme, la transposase. Cette transposase coupe la chaîne d'ADN, qui est ensuite réparée. Le déplacement qui en résulte peut être simple (sans réplication du transposon) ou réplicative.
Un gène, du grec ancien (« génération, naissance, origine »), est, en biologie, une séquence discrète et héritable de nucléotides dont l'expression affecte les caractères d'un organisme. L'ensemble des gènes et du matériel non codant d'un organisme constitue son génome. Un gène possède donc une position donnée dans le génome d'une espèce, on parle de locus génique. La séquence est généralement formée par des désoxyribonucléotides, et est donc une séquence d'ADN (par des ribonucléotides formant de l'ARN dans le cas de certains virus), au sein d'un chromosome.
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
Plonge dans la neuroépigénétique, couvrant la structure de la chromatine, les modifications des histones, la méthylation de l'ADN et leur impact sur la transcription et l'hérédité des gènes.
Explore la neuroépigénétique, en se concentrant sur la structure de la chromatine, la régulation et l'héritage épigénétique dans le neurodéveloppement.
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 ( ...
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been di ...
Nature Portfolio2024
,
Since Strahl and Allis proposed the "language of covalent histone modifications", a host of experimental studies have shed light on the different facets of chromatin regulation by epigenetic mechanisms. Initially proposed as a concept for controlling gene ...