Matchs Deep Blue contre KasparovLes matchs Deep Blue contre Kasparov sont deux matchs de six parties d'échecs chacune entre le champion du monde russe Garry Kasparov et un supercalculateur IBM américain appelé Deep Blue. Deep Blue Deep Blue est l'aboutissement du projet ChipTest, lancé par les étudiants Feng-hsiung Hsu, Murray Campbell et Thomas Anantharaman au laboratoire de l'université Carnegie-Mellon en 1985. Renommé Deep Thought en 1988, le projet est devenu Deep Blue en 1993.
Go en informatiquethumb|Les programmes sont plus performants sur un goban de petite taille (ici 9×9). Le développement de programme informatique capable de jouer au go est un problème de l'intelligence artificielle. Ce problème est considéré comme l'un des plus complexes à résoudre, les algorithmes classiques (minimax et alpha-bêta) offrant des résultats médiocres. Le premier programme a été écrit en 1968 par comme un élément de sa thèse sur la reconnaissance des formes.
Google DeepMindGoogle DeepMind est une entreprise spécialisée dans l'intelligence artificielle appartenant à Google. L'entreprise est remarquée notamment pour son programme de jeu de Go AlphaGo, et son logiciel AlphaFold, qui permet de prédire la structure des protéines à partir de leurs séquences en acides aminés. Originellement appelée DeepMind Technologies Limited et fondée en 2010 par Demis Hassabis, Mustafa Suleyman et Shane Legg, elle est rachetée le 26 janvier 2014, par Google pour plus de 628 millions de dollars américains.
AlphaZeroAlphaZero est une version généraliste d’AlphaGo Zero, un logiciel de go (jeu de stratégie abstrait chinois) qui a été adapté pour jouer aux échecs et au shogi (échecs japonais). AlphaZero a été créé par Demis Hassabis de DeepMind, une entreprise appartenant au groupe Google. Le , DeepMind poste sur la plateforme de prépublication arXiv un article concernant AlphaZero, un programme utilisant l’approche généralisée d'AlphaGo Zero. Le style de jeu d'AlphaZero s'écarte des programmes de jeu habituels tout en requérant moins de calculs par mouvement en regard de ses concurrents.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Tensor Processing Unitvignette|Un Tensor Processing Unit 3.0 datant de mai 2016 Un Tensor Processing Unit (TPU, unité de traitement de tenseur) est un circuit intégré spécifique pour une application (ASIC), développé par Google spécifiquement pour accélérer les systèmes d'intelligence artificielle par réseaux de neurones. Les TPU ont été annoncés en 2016 au Google I/O, lorsque la société a déclaré les utiliser dans leurs centres de données depuis plus d'un an.
Go (jeu)Le go, également appelé jeu de go, appelé en japonais , ou dans certaines expressions ; en chinois (), en Hanyu pinyin wéiqí, la prononciation shanghaïenne Wedji; et en coréen baduk (바둑), est un jeu de société originaire de Chine. Il oppose deux adversaires qui placent à tour de rôle des pierres, respectivement noires et blanches, sur les intersections d'un tablier quadrillé appelé goban en japonais ( en chinois). Le but est de contrôler le plan de jeu en y construisant des « territoires ».
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.