Résumé
Boson sampling is a restricted model of non-universal quantum computation introduced by Scott Aaronson and Alex Arkhipov after the original work of Lidror Troyansky and Naftali Tishby, that explored possible usage of boson scattering to evaluate expectation values of permanents of matrices. The model consists of sampling from the probability distribution of identical bosons scattered by a linear interferometer. Although the problem is well defined for any bosonic particles, its photonic version is currently considered as the most promising platform for a scalable implementation of a boson sampling device, which makes it a non-universal approach to linear optical quantum computing. Moreover, while not universal, the boson sampling scheme is strongly believed to implement computing tasks which are hard to implement with classical computers by using far fewer physical resources than a full linear-optical quantum computing setup. This advantage makes it an ideal candidate for demonstrating the power of quantum computation in the near term. Consider a multimode linear-optical circuit of N modes that is injected with M indistinguishable single photons (N>M). Then, the photonic implementation of the boson sampling task consists of generating a sample from the probability distribution of single-photon measurements at the output of the circuit. Specifically, this requires reliable sources of single photons (currently the most widely used ones are parametric down-conversion crystals), as well as a linear interferometer. The latter can be fabricated, e.g., with fused-fiber beam splitters, through silica-on-silicon or laser-written integrated interferometers, or electrically and optically interfaced optical chips. Finally, the scheme also necessitates high efficiency single photon-counting detectors, such as those based on current-biased superconducting nanowires, which perform the measurements at the output of the circuit. Therefore, based on these three ingredients, the boson sampling setup does not require any ancillas, adaptive measurements or entangling operations, as does e.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.