Disphénoïde adouciEn géométrie, le disphénoïde adouci est un des solides de Johnson (J84). C'est un polyèdre qui possède seulement des faces formées de triangles équilatéraux, et est, par conséquent un deltaèdre. Ce n'est pas un polyèdre régulier car certains sommets ont quatre faces et d'autres en ont cinq. C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en « copier/coller » de solides de Platon et de solides d'Archimèdes. Il a douze faces et constitue ainsi un exemple de dodécaèdre.
Diamant triangulaireLe diamant triangulaire est une figure géométrique faisant partie des solides de Johnson (J12). Comme son nom le suggère, il peut être réalisé en rassemblant deux tétraèdres par une face, c'est un deltaèdre convexe. Bien que toutes ses faces soient en situation de congruence et qu'elles soient toutes uniformes, ce n'est pas un solide de Platon car certains de ses sommets joignent trois faces alors que d'autres en relient quatre. Les 92 solides de Johnson furent nommés et décrits par Norman Johnson en 1966.
Simplicial polytopeIn geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a simplicial polyhedron in three dimensions contains only triangular faces and corresponds via Steinitz's theorem to a maximal planar graph. They are topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons. Simplicial polyhedra include: Bipyramids Gyroelongated dipyramids Deltahedra (equilateral triangles) Platonic tetrahedron, octahed
Solide de JohnsonEn géométrie, un solide de Johnson est un polyèdre strictement convexe dont chaque face est un polygone régulier et qui n'est pas isogonal (qui n'est donc ni un solide de Platon, ni un solide d'Archimède, ni un prisme ni un antiprisme). Il n'est pas nécessaire que chaque face soit un polygone identique, ou que les mêmes polygones se rejoignent autour de chaque sommet. Un exemple de solide de Johnson est la pyramide à base carrée avec des côtés triangulaires équilatéraux (J1) ; il possède une face carrée et quatre faces triangulaires.
Toroidal polyhedronIn geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus (g) of 1 or greater. Notable examples include the Császár and Szilassi polyhedra. Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and at each vertex the edges and faces that meet at the vertex should be linked together in a single cycle of alternating edges and faces, the link of the vertex.
Well-covered graphIn graph theory, a well-covered graph is an undirected graph in which every minimal vertex cover has the same size as every other minimal vertex cover. Equivalently, these are the graphs in which all maximal independent sets have equal size. Well-covered graphs were defined and first studied by Michael D. Plummer in 1970. The well-covered graphs include all complete graphs, balanced complete bipartite graphs, and the rook's graphs whose vertices represent squares of a chessboard and edges represent moves of a chess rook.
Antiprisme carréEn géométrie, l'antiprisme carré est le deuxième solide de l'ensemble infini des antiprismes. Celui-ci peut être regardé comme un prisme carré droit dont on a opéré une fraction de tour sur une des deux faces carrées supérieure ou inférieure pour faire un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces carrées supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
BipyramideEn géométrie, un diamant ou bipyramide, ou encore dipyramide, est un polyèdre constitué de deux pyramides symétriques dont la même base forme un polygone régulier. L'ordre du diamant est l'ordre du polygone de la base. C'est aussi l'ordre du sommet de chaque pyramide. Il existe un unique diamant dans les polyèdres réguliers: l'octaèdre. Cependant, pour chaque ordre d'un diamant, il existe un diamant dont toutes les faces sont des triangles isocèles isométriques.
IcosaèdreEn géométrie, un icosaèdre est un solide de dimension 3, de la famille des polyèdres, contenant exactement vingt faces. Le préfixe icosa-, d'origine grecque, signifie « vingt ». Il existe de nombreux polyèdres à vingt faces tels l'icosaèdre régulier convexe (appelé plus simplement icosaèdre si le contexte fait référence aux solides de Platon), l'icosaèdre rhombique, le pseudo-icosaèdre, le grand icosaèdre ou plusieurs solides de Johnson.
Regular icosahedronIn geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.