Le diamant pentagonal est une figure géométrique faisant partie des solides de Johnson (J13).
Comme son nom le suggère, il peut être obtenu en joignant 2 pyramides pentagonales (J2) par leurs bases, ce qui en fait un deltaèdre convexe. Bien que toutes ses faces soient uniformes, ce n'est pas un solide de Platon car certains de ses sommets ont quatre faces en commun alors que d'autres en ont cinq.
Les 92 Solides de Johnson furent nommés et décrits par Norman Johnson en 1966.
Certaines molécules peuvent avoir une géométrie moléculaire bipyramidale pentagonale.
MathWorld.wolfram.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie, le disphénoïde adouci est un des solides de Johnson (J84). C'est un polyèdre qui possède seulement des faces formées de triangles équilatéraux, et est, par conséquent un deltaèdre. Ce n'est pas un polyèdre régulier car certains sommets ont quatre faces et d'autres en ont cinq. C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en « copier/coller » de solides de Platon et de solides d'Archimèdes. Il a douze faces et constitue ainsi un exemple de dodécaèdre.
Un deltaèdre est un polyèdre dont toutes les faces sont des triangles équilatéraux. Le nom est issu de la lettre majuscule du grec delta (Δ), qui a la forme d'un triangle. Il existe une infinité de deltaèdres, mais de ceux-ci, seuls huit sont convexes, ayant quatre, six, huit, dix, douze, quatorze, seize et vingt faces. Le nombre de faces, arêtes et sommets est listé ci-dessous pour chacun des huit deltaèdres convexes. Les deltaèdre ne doivent pas être confondus avec les deltoèdres (épelé avec un "o"), les polyèdres dont les faces sont des cerfs-volants.
Le diamant triangulaire est une figure géométrique faisant partie des solides de Johnson (J12). Comme son nom le suggère, il peut être réalisé en rassemblant deux tétraèdres par une face, c'est un deltaèdre convexe. Bien que toutes ses faces soient en situation de congruence et qu'elles soient toutes uniformes, ce n'est pas un solide de Platon car certains de ses sommets joignent trois faces alors que d'autres en relient quatre. Les 92 solides de Johnson furent nommés et décrits par Norman Johnson en 1966.
The growth modulation of metal nanocrystals (NCs) by Ostwald ripening (OR) involves control of the relocation of matter by diffusional mass transfer from the dissolution of small nanocrystals (SNCs) towards large nanocrystals whose surface energy is lower. ...