Résumé
In computer graphics, color quantization or color image quantization is applied to color spaces; it is a process that reduces the number of distinct colors used in an , usually with the intention that the new image should be as visually similar as possible to the original image. Computer algorithms to perform color quantization on bitmaps have been studied since the 1970s. Color quantization is critical for displaying images with many colors on devices that can only display a limited number of colors, usually due to memory limitations, and enables efficient compression of certain types of images. The name "color quantization" is primarily used in computer graphics research literature; in applications, terms such as optimized palette generation, optimal palette generation, or decreasing color depth are used. Some of these are misleading, as the palettes generated by standard algorithms are not necessarily the best possible. Most standard techniques treat color quantization as a problem of clustering points in three-dimensional space, where the points represent colors found in the original image and the three axes represent the three color channels. Almost any three-dimensional clustering algorithm can be applied to color quantization, and vice versa. After the clusters are located, typically the points in each cluster are averaged to obtain the representative color that all colors in that cluster are mapped to. The three color channels are usually red, green, and blue, but another popular choice is the Lab color space, in which Euclidean distance is more consistent with perceptual difference. The most popular algorithm by far for color quantization, invented by Paul Heckbert in 1979, is the median cut algorithm. Many variations on this scheme are in use. Before this time, most color quantization was done using the population algorithm or population method, which essentially constructs a histogram of equal-sized ranges and assigns colors to the ranges containing the most points.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.