Résumé
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0). A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions. The degree of the polynomial determines the genus of the curve: a polynomial of degree 2g + 1 or 2g + 2 gives a curve of genus g. When the degree is equal to 2g + 1, the curve is called an imaginary hyperelliptic curve. Meanwhile, a curve of degree 2g + 2 is termed a real hyperelliptic curve. This statement about genus remains true for g = 0 or 1, but those special cases are not called "hyperelliptic". In the case g = 1 (if one chooses a distinguished point), such a curve is called an elliptic curve. While this model is the simplest way to describe hyperelliptic curves, such an equation will have a singular point at infinity in the projective plane. This feature is specific to the case n > 3. Therefore, in giving such an equation to specify a non-singular curve, it is almost always assumed that a non-singular model (also called a smooth completion), equivalent in the sense of birational geometry, is meant. To be more precise, the equation defines a quadratic extension of C(x), and it is that function field that is meant. The singular point at infinity can be removed (since this is a curve) by the normalization (integral closure) process. It turns out that after doing this, there is an open cover of the curve by two affine charts: the one already given by and another one given by The glueing maps between the two charts are given by and wherever they are defined. In fact geometric shorthand is assumed, with the curve C being defined as a ramified double cover of the projective line, the ramification occurring at the roots of f, and also for odd n at the point at infinity.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (4)

Computing Cyclic Isogenies between Principally Polarized Abelian Varieties over Finite Fields

Marius Lorenz Vuille

Abelian varieties are fascinating objects, combining the fields of geometry and arithmetic. While the interest in abelian varieties has long time been of purely theoretic nature, they saw their first
EPFL2020

Computational Aspects of Jacobians of Hyperelliptic Curves

Alina Dudeanu

Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do i
EPFL2016

On the Analysis of Public-Key Cryptologic Algorithms

Andrea Miele

The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by
EPFL2015
Afficher plus
Concepts associés (13)
Rational normal curve
In mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space Pn. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z0Z2 = Z, and for n = 3 it is the twisted cubic. The term "normal" refers to projective normality, not normal schemes. The intersection of the rational normal curve with an affine space is called the moment curve.
Courbe hyperelliptique
droite|vignette|Une courbe hyperelliptique, d'équation En géométrie algébrique, une courbe hyperelliptique est un cas particulier de courbe algébrique de genre g > 1 donnée par une équation de la forme : où f(x) est un polynôme de degré n = 2g + 1 > 4 ou avec n = 2g + 2 > 4 racines distinctes et h(x) est un polynôme de degré strictement inférieur à g + 2 (si la caractéristique du corps commutatif n'est pas 2, on peut prendre h(x) = 0).
Glossary of algebraic geometry
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Afficher plus
Cours associés (1)
MATH-201: Analysis III
Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques; Eléments
Séances de cours associées (7)
Analyse complexe : Domaines simplement connectés
Explore les domaines simplement connectés dans l'analyse complexe, y compris les fonctions holomorphiques, la formule intégrale de Cauchy, et la série Taylor.
Courbe du genre 2 : Diviseurs très simples
Explore de très nombreux diviseurs sur les courbes du genre 2 et leurs implications.
Curve Integral : propriétés et applications
Explore les intégrales de la courbe, démontrant les propriétés et les applications réelles, y compris l'excavation des tunnels et l'évaluation de la sécurité en fonction de la densité de la criminalité.
Afficher plus