Icosaèdre tridiminuéL'icosaèdre tridiminué est un polyèdre faisant partie des solides de Johnson (J63). Comme le nom l'indique, il peut être construit en diminuant triplement un icosaèdre en détachant trois pyramides pentagonales (J2). Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966. MathWorld.wolfram.
Schläfli orthoschemeIn geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of edges that are mutually orthogonal. They were introduced by Ludwig Schläfli, who called them orthoschemes and studied their volume in Euclidean, hyperbolic, and spherical geometries. H. S. M. Coxeter later named them after Schläfli.
Diamant triangulaireLe diamant triangulaire est une figure géométrique faisant partie des solides de Johnson (J12). Comme son nom le suggère, il peut être réalisé en rassemblant deux tétraèdres par une face, c'est un deltaèdre convexe. Bien que toutes ses faces soient en situation de congruence et qu'elles soient toutes uniformes, ce n'est pas un solide de Platon car certains de ses sommets joignent trois faces alors que d'autres en relient quatre. Les 92 solides de Johnson furent nommés et décrits par Norman Johnson en 1966.
Hexacontaèdre pentagonalUn hexacontaèdre pentagonal est un solide de Catalan, c'est le dual du dodécaèdre adouci. Il possède comme lui deux formes distinctes, qui sont les images dans un miroir l'une de l'autre (ou "énantiomorphes"). Ses faces, uniformes, sont des pentagones non réguliers possédant un axe de symétrie, 3 côtés de même longueur et 4 angles internes égaux. Un exemple de réalisation sur cette base est l'ensemble des trois Amazon Spheres à Seattle ainsi que les Sphère d'Enrichissement qui apparaissent dans le jeu vidéo Portal 2.
Hécatonicosachore 5,3,5/2En géométrie, l'hécatonicosachore 5,3,5/2 est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5,3,5/2}. C'est l'un des 10 polychores de Schläfli-Hess. C'est l'un des quatre 4-polytopes réguliers étoilés découverts par Ludwig Schläfli. Il a la même que l'hexacosichore et l'hécatonicosachore icosaédral, ainsi que la même disposition de faces que le grand hécatonicosachore étoilé.