Serge LangSerge Lang, né le à Saint-Germain-en-Laye et mort le à Berkeley, est un mathématicien franco-américain. Il est connu pour ses travaux en théorie des nombres et pour ses manuels scolaires, dont l'influent Algebra. Il fut membre de la National Academy of Sciences et du groupe Bourbaki. Son père Étienne Lang est un homme d'affaires et sa mère Hélène Schlepianoff une pianiste concertiste. Son grand-père paternel, Edmond Lang, industriel-filateur, chef de la Société textile Les Fils d'Emanuel Lang, épousa Elisabeth Lazard, fille de Simon Lazard, associé-fondateur de la Banque Lazard.
André WeilAndré Weil, né le à Paris et mort à Princeton (New Jersey, États-Unis) le , est une des grandes figures parmi les mathématiciens du . Connu pour son travail fondamental en théorie des nombres et en géométrie algébrique, il est un des membres fondateurs du groupe Bourbaki. Il est le frère de la philosophe Simone Weil et père de l'écrivaine Sylvie Weil. vignette|gauche|La famille Weil en 1916. André Weil est le fils aîné d'une famille bourgeoise, unie, raisonnablement aisée et agnostique, d'origine juive alsacienne du côté de son père Bernard et juive russe du côté de sa mère Selma Reinherz.
Jean-Pierre SerreJean-Pierre Serre, né le à Bages (Pyrénées-Orientales), est un mathématicien français, considéré comme l’un des plus grands mathématiciens du . Il reçoit de nombreuses récompenses pour ses recherches, et est en particulier lauréat de la médaille Fields en 1954, du prix Balzan en 1985, de la médaille d'or du CNRS en 1987, du prix Wolf de mathématiques en 2000, et le premier lauréat du prix Abel en 2003. Jean-Pierre Serre est né en 1926 à Bages (Pyrénées-Orientales) d'Adèle et Jean Serre, pharmaciens, et passe son enfance à Vauvert où ils sont installés.
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Équation diophantiennevignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres.
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.