Concept

Medial magma

In abstract algebra, a medial magma or medial groupoid is a magma or groupoid (that is, a set with a binary operation) which satisfies the identity or more simply for all x, y, u and v, using the convention that juxtaposition denotes the same operation but has higher precedence. This identity has been variously called medial, abelian, alternation, transposition, interchange, bi-commutative, bisymmetric, surcommutative, entropic etc. Any commutative semigroup is a medial magma, and a medial magma has an identity element if and only if it is a commutative monoid. The "only if" direction is the Eckmann–Hilton argument. Another class of semigroups forming medial magmas are normal bands. Medial magmas need not be associative: for any nontrivial abelian group with operation + and integers m ≠ n, the new binary operation defined by yields a medial magma which in general is neither associative nor commutative. Using the definition of , for a magma M, one may define the Cartesian square magma M × M with the operation (x, y) ∙ (u, v) = (x ∙ u, y ∙ v) . The binary operation ∙ of M, considered as a mapping from M × M to M, maps (x, y) to x ∙ y, (u, v) to u ∙ v, and (x ∙ u, y ∙ v) to (x ∙ u) ∙ (y ∙ v) . Hence, a magma M is medial if and only if its binary operation is a magma homomorphism from M × M to M. This can easily be expressed in terms of a commutative diagram, and thus leads to the notion of a medial magma object in a . (See the discussion in auto magma object.) If f and g are endomorphisms of a medial magma, then the mapping f∙g defined by pointwise multiplication is itself an endomorphism. It follows that the set End(M) of all endomorphisms of a medial magma M is itself a medial magma. The Bruck–Murdoch-Toyoda theorem provides the following characterization of medial quasigroups. Given an abelian group A and two commuting automorphisms φ and ψ of A, define an operation ∗ on A by x ∗ y = φ(x) + ψ(y) + c, where c some fixed element of A. It is not hard to prove that A forms a medial quasigroup under this operation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.