Résumé
En mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe. Si est un pseudo-anneau, alors est un demi-groupe. L'ensemble vide muni de la loi de composition interne est un demi-groupe. Tout ensemble ordonné dont toute paire d'éléments possède une borne inférieure, muni de la loi qui leur associe cette borne inférieure, constitue un demi-groupe commutatif. Pour tout demi-groupe , l'ensemble des parties de S est également un demi-groupe pour l'opération définie par Soient et deux demi-groupes. Une application est un morphisme de demi-groupes si pour tous . Par exemple, l'application est un morphisme du demi-groupe des entiers naturels munis de l’addition dans le demi-groupe des puissances entières de 2 munis de la multiplication. Soit un demi-groupe. Il est d'usage de noter le monoïde obtenu par l'ajout à d'un élément supplémentaire, qui déterminera comme l'unique prolongement de à qui fait de ce nouvel élément le neutre de ce dernier restant s'il est déjà unifère. Formellement Dans le deuxième cas, est un objet quelconque qui ne figure pas dans , et la loi sur est étendue à en posant pour tout dans Lorsque le demi-groupe est commutatif, le monoïde l'est aussi. On définit alors son groupe symétrisé ou groupe de Grothendieck . Si de plus est simplifiable (c'est-à-dire si tous ses éléments sont réguliers) alors l'est aussi, donc le morphisme canonique de dans (via ) est injectif. Un sous-demi-groupe d'un demi-groupe est un sous-ensemble de fermé sous l'opération de . Un sous-monoïde d'un monoïde est un sous-demi-groupe de qui contient l'élément neutre de .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.