En mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe. Si est un pseudo-anneau, alors est un demi-groupe. L'ensemble vide muni de la loi de composition interne est un demi-groupe. Tout ensemble ordonné dont toute paire d'éléments possède une borne inférieure, muni de la loi qui leur associe cette borne inférieure, constitue un demi-groupe commutatif. Pour tout demi-groupe , l'ensemble des parties de S est également un demi-groupe pour l'opération définie par Soient et deux demi-groupes. Une application est un morphisme de demi-groupes si pour tous . Par exemple, l'application est un morphisme du demi-groupe des entiers naturels munis de l’addition dans le demi-groupe des puissances entières de 2 munis de la multiplication. Soit un demi-groupe. Il est d'usage de noter le monoïde obtenu par l'ajout à d'un élément supplémentaire, qui déterminera comme l'unique prolongement de à qui fait de ce nouvel élément le neutre de ce dernier restant s'il est déjà unifère. Formellement Dans le deuxième cas, est un objet quelconque qui ne figure pas dans , et la loi sur est étendue à en posant pour tout dans Lorsque le demi-groupe est commutatif, le monoïde l'est aussi. On définit alors son groupe symétrisé ou groupe de Grothendieck . Si de plus est simplifiable (c'est-à-dire si tous ses éléments sont réguliers) alors l'est aussi, donc le morphisme canonique de dans (via ) est injectif. Un sous-demi-groupe d'un demi-groupe est un sous-ensemble de fermé sous l'opération de . Un sous-monoïde d'un monoïde est un sous-demi-groupe de qui contient l'élément neutre de .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.