Concept

257-gon

In Geometry, 257-gon, also known broadly as the Dihectapentacontakaiheptagon, is a polygon with 257 sides. The sum of the interior angles of any non-self-intersecting 257-gon is 45,900°. The area of a regular 257-gon is (with t = edge length) A whole regular 257-gon is not visually discernible from a circle, and its perimeter differs from that of the circumscribed circle by about 24 parts per million. The regular 257-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 257 is a Fermat prime, being of the form 22n + 1 (in this case n = 3). Thus, the values and are 128-degree algebraic numbers, and like all constructible numbers they can be written using square roots and no higher-order roots. Although it was known to Gauss by 1801 that the regular 257-gon was constructible, the first explicit constructions of a regular 257-gon were given by Magnus Georg Paucker (1822) and Friedrich Julius Richelot (1832). Another method involves the use of 150 circles, 24 being Carlyle circles: this method is pictured below. One of these Carlyle circles solves the quadratic equation x2 + x − 64 = 0. 257-gon-step-1.png|Step 1 257-gon-step-2.png|Step 2 257-gon-step-3.png|Step 3 257-gon-step-4.png|Step 4 257-gon-step-5.png|Step 5 257-gon-step-6.png|Step 6 257-gon-step-7.png|Step 7 257-gon-step-8.png|Step 8 257-gon-step-9.png|Step 9 The regular 257-gon has Dih257 symmetry, order 514. Since 257 is a prime number there is one subgroup with dihedral symmetry: Dih1, and 2 cyclic group symmetries: Z257, and Z1. A 257-gram is a 257-sided star polygon. As 257 is prime, there are 127 regular forms generated by Schläfli symbols {257/n} for all integers 2 ≤ n ≤ 128 as . Below is a view of {257/128}, with 257 nearly radial edges, with its star vertex internal angles 180°/257 (~0.7°).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.