In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.
Some regular polygons are easy to construct with compass and straightedge; others are not. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, and they knew how to construct a regular polygon with double the number of sides of a given regular polygon. This led to the question being posed: is it possible to construct all regular polygons with compass and straightedge? If not, which n-gons (that is, polygons with n edges) are constructible and which are not?
Carl Friedrich Gauss proved the constructibility of the regular 17-gon in 1796. Five years later, he developed the theory of Gaussian periods in his Disquisitiones Arithmeticae. This theory allowed him to formulate a sufficient condition for the constructibility of regular polygons. Gauss stated without proof that this condition was also necessary, but never published his proof. A full proof of necessity was given by Pierre Wantzel in 1837. The result is known as the Gauss–Wantzel theorem:
A regular n-gon can be constructed with compass and straightedge if and only if n is a power of 2 or the product of a power of 2 and any number of distinct Fermat primes.
A Fermat prime is a prime number of the form
In order to reduce a geometric problem to a problem of pure number theory, the proof uses the fact that a regular n-gon is constructible if and only if the cosine is a constructible number—that is, can be written in terms of the four basic arithmetic operations and the extraction of square roots. Equivalently, a regular n-gon is constructible if any root of the nth cyclotomic polynomial is constructible.
Restating the Gauss-Wantzel theorem:
A regular n-gon is constructible with straightedge and compass if and only if n = 2kp1p2.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
In this article, we prove that double quasi-Poisson algebras, which are noncommutative analogues of quasi-Poisson manifolds, naturally give rise to pre-Calabi-Yau algebras. This extends one of the main results in [11], where a correspondence between certai ...
2022
Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classica ...
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
Un heptadécagone est un polygone à 17 sommets, donc 17 côtés et 119 diagonales. La somme des angles internes d'un heptadécagone non croisé vaut , soit . Dans l'heptadécagone régulier convexe, chaque angle interne vaut donc , soit environ 158,82°. Un heptadécagone régulier est un heptadécagone dont les 17 côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a huit : sept étoilés (les heptadécagrammes notés {17/k} pour k de 2 à 8) et un convexe (noté {17}).
Les pliages d'origamis sont utilisés en mathématiques pour procéder à des constructions géométriques. Selon les méthodes de pliages utilisées, on obtient des procédés plus riches que ceux propres à la règle et au compas. Le formalisme auquel il est le plus souvent fait référence est celui de Huzita. Il contient 6 axiomes qui sont en fait les 6 pliages de base permettant de décomposer n'importe quel origami. En voici la liste : Huzita axiom 1.png |'''Axiome 1.''' Un unique pli passe par deux points p_1 et p_2 spécifiés.
Un heptagone est un polygone à sept sommets, donc sept côtés et quatorze diagonales. La somme des angles internes d'un heptagone non croisé vaut . Un heptagone régulier est un heptagone dont tous les côtés sont égaux et dont tous les angles internes sont égaux. Il y en a trois : deux étoilés (les heptagrammes réguliers) et un convexe. C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'heptagone régulier ». L'heptagone régulier est le plus petit des polygones réguliers non constructibles à la règle et au compas.