_Point location problem The point location problem is a fundamental topic of computational geometry. It finds applications in areas that deal with processing geometrical data: computer graphics, geographic information systems (GIS), motion planning, and computer aided design (CAD). In its most general form, the problem is, given a partition of the space into disjoint regions, to determine the region where a query point lies. For example, the problem of determining which window of a graphical user interface contains a given mouse click can be formulated as an instance of point location, with a subdivision formed by the visible parts of each window, although specialized data structures may be more appropriate than general-purpose point location data structures in this application. Another special case is the point in polygon problem, in which one needs to determine whether a point is inside, outside, or on the boundary of a single polygon. In many applications, one needs to determine the location of several different points with respect to the same partition of the space. To solve this problem efficiently, it is useful to build a data structure that, given a query point, quickly determines which region contains the query point (e.g. Voronoi Diagram). In the planar case, we are given a planar subdivision S, formed by multiple polygons called faces, and need to determine which face contains a query point. A brute force search of each face using the point-in-polygon algorithm is possible, but usually not feasible for subdivisions of high complexity. Several different approaches lead to optimal data structures, with O(n) storage space and O(log n) query time, where n is the total number of vertices in S. For simplicity, we assume that the planar subdivision is contained inside a square bounding box. The simplest and earliest data structure to achieve O(log n) time was discovered by Dobkin and Lipton in 1976. It is based on subdividing S using vertical lines that pass through each vertex in S.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-412: Software security
This course focuses on software security fundamentals, secure coding guidelines and principles, and advanced software security concepts. Students learn to assess and understand threats, learn how to d
Publications associées (1)

Non-linear subdivision of univariate signals and discrete surfaces

Nicolas Aspert

During the last 20 years, the joint expansion of computing power, computer graphics, networking capabilities and multiresolution analysis have stimulated several research domains, and developed the need for new types of data such as 3D models, i.e. discret ...
EPFL2003
Concepts associés (2)
Polygone simple
En géométrie, un polygone est dit simple si deux côtés non consécutifs ne se rencontrent pas et deux côtés consécutifs n'ont en commun que l'un de leurs sommets, autrement dit, si ses segments forment une courbe de Jordan. Un polygone simple est topologiquement équivalent à un cercle. Les polygones simples sont aussi appelés « polygones de Jordan », en relation avec le théorème de Jordan qui établit que toute courbe fermée du plan qui « ne se recoupe pas » divise le plan en deux régions : l'intérieur et l'extérieur.
Géométrie algorithmique
vignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.