Discute de l'analyse des textures dans les images, en se concentrant sur les propriétés statistiques et structurelles, les techniques de segmentation et les applications d'apprentissage automatique pour la classification des textures.
Explore la quantification de l'incertitude et la détection d'erreurs d'étiquetage dans l'apprentissage profond pour la segmentation sémantique, en mettant l'accent sur les défis et les méthodes de détection d'erreurs.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore l'impact de l'imperméabilisation des sols, les statistiques d'utilisation des terres, la segmentation des images et la classification aléatoire des forêts pour une gestion durable des terres.
Couvre les principes fondamentaux du traitement de l'image scientifique, les pratiques logicielles et les considérations éthiques dans le traitement de l'image.
Explore les techniques de segmentation, y compris les modèles CNN et U-Net, pour la reconnaissance et l'analyse d'images, en mettant l'accent sur les méthodes automatisées qui permettent de gagner du temps.