Concept

Dirac cone

Résumé
Dirac cones, named after Paul Dirac, are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. In these materials, at energies near the Fermi level, the valence band and conduction band take the shape of the upper and lower halves of a conical surface, meeting at what are called Dirac points. Typical examples include graphene, topological insulators, bismuth antimony thin films and some other novel nanomaterials, in which the electronic energy and momentum have a linear dispersion relation such that the electronic band structure near the Fermi level takes the shape of an upper conical surface for the electrons and a lower conical surface for the holes. The two conical surfaces touch each other and form a zero-band gap semimetal. The name of Dirac cone comes from the Dirac equation that can describe relativistic particles in quantum mechanics, proposed by Paul Dirac. Isotropic Dirac cones in graphene were first predicted by P. R. Wallace in 1947 and experimentally observed by the Nobel Prize laureates Andre Geim and Konstantin Novoselov in 2005. In quantum mechanics, Dirac cones are a kind of crossing-point which electrons avoid, where the energy of the valence and conduction bands are not equal anywhere in two dimensional lattice k-space, except at the zero dimensional Dirac points. As a result of the cones, electrical conduction can be described by the movement of charge carriers which are massless fermions, a situation which is handled theoretically by the relativistic Dirac equation. The massless fermions lead to various quantum Hall effects, magnetoelectric effects in topological materials, and ultra high carrier mobility. Dirac cones were observed in 2008-2009, using angle-resolved photoemission spectroscopy (ARPES) on the potassium-graphite intercalation compound KC8. and on several bismuth-based alloys.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.