The clathrate gun hypothesis is a proposed explanation for the periods of rapid warming during the Quaternary. The hypothesis is that changes in fluxes in upper intermediate waters in the ocean caused temperature fluctuations that alternately accumulated and occasionally released methane clathrate on upper continental slopes. This would have had an immediate impact on the global temperature, as methane is a much more powerful greenhouse gas than carbon dioxide. Despite its atmospheric lifetime of around 12 years, methane's global warming potential is 72 times greater than that of carbon dioxide over 20 years, and 25 times over 100 years (33 when accounting for aerosol interactions). It is further proposed that these warming events caused the Bond Cycles and individual interstadial events, such as the Dansgaard–Oeschger interstadials. The hypothesis was supported for the Bølling-Allerød and Preboreal period, but not for Dansgaard–Oeschger interstadials, although there are still debates on the topic. While it may be important on the millennial timescales, it is no longer considered relevant for the near future climate change: the IPCC Sixth Assessment Report states "It is very unlikely that gas clathrates (mostly methane) in deeper terrestrial permafrost and subsea clathrates will lead to a detectable departure from the emissions trajectory during this century". Methane clathrate, also known commonly as methane hydrate, is a form of water ice that contains a large amount of methane within its crystal structure. Potentially large deposits of methane clathrate have been found under sediments on the ocean floors of the Earth, although the estimates of total resource size given by various experts differ by many orders of magnitude, leaving doubt as to the size of methane clathrate deposits (particularly in the viability of extracting them as a fuel resource). Indeed, cores of greater than 10 centimeters' contiguous depth had only been found in three sites as of 2000, and some resource reserve size estimates for specific deposits/locations have been based primarily on seismology.
Rainer Beck, Ana Gutiérrez González, Harmina Vejayan