Publications associées (36)

Scalable constrained optimization

Maria-Luiza Vladarean

Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
EPFL2024

Plug-and-play adaptive surrogate modeling of parametric nonlinear dynamics in frequency domain

Jürg Alexander Schiffmann, Phillip Huwiler, Davide Pradovera

We present an algorithm for constructing efficient surrogate frequency-domain models of (nonlinear) parametric dynamical systems in a non-intrusive way. To capture the dependence of the underlying system on frequency and parameters, our proposed approach c ...
2023

Modeling non-covalent interactions in condensed phase

Veronika Juraskova

The modeling of non-covalent interactions, solvation effects, and chemical reactions in complex molecular environment is a challenging task. Current state-of-the-art approaches often rely on static computations using implicit solvent models and harmonic ap ...
EPFL2022

Modeling Supply Chain Disruptions: A Network Flow Approach

René Yves Glogg

Globalization, outsourcing and cost optimization have all contributed to increased supply chain vulnerability, yet our understanding of effective mitigation strategies remains limited. In our research, we study the effects of disruptions on supply chain ne ...
EPFL2021

MATERIAL POINT METHOD A numerical evaluation for elastic problems

Mathilde Metral

Frozen, the movie, released in 2013, made a big impression on many people: some children were no doubt amazed by the talking snowman, others by the film’s music, the designers were probably more interesed in the reproduction quality of the snow modelled, b ...
2020

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.