Catherine DehollainShe got the Master Degree in Electrical Engineering in 1982 from EPFL. Then, she worked in Geneva up to 1990 as a Senior Design Engineer in telecommunications at the European research center of Motorola. From 1990 up to 1995, she did her PhD thesis at the Chaire des Circuits et Systemes at EPFL in the domain of impedance broadband matching circuits. Since 1995, she is responsible at EPFL for the RFIC group. She has participated to different Swiss research projects as well as European projects dedicated to data communication of sensors nodes (e.g. MuMoR, Minami European projects) as well as remote powering of sensor nodes. Her main domains of interest are telecom applications (e.g. Impulse radio Ultra-Wide Band, super-regenerative receivers, RFIDs)as well as biomedical applications. She has been the coordinator of European projects (e.g. FP6 SUPREGE, FP7 Ultrasponder)and of Swiss projects (e.g. CAPED CTI project, NEURO-IC SNF project).
Sandro CarraraSandro Carrara a été nommé IEEE Fellow pour ses remarquables réalisations dans le domaine de la conception de biocapteurs CMOS à l'échelle nanométrique. Il a également reçu le prix "IEEE Sensors Council Technical Achievement Award" en 2016 pour son leadership dans le domaine émergent du co-design des interfaces Bio/Nano/CMOS. Il est un Professeur titulaire à l' EPFL à Lausanne (Suisse) et responsable du groupe de recherche "Bio/CMOS Interfaces" (BCI). Il est ancien professeur de biocapteurs optiques et électriques au Département de génie électrique et de biophysique (DIBE) de l'Université de Gênes (Italie) et ancien professeur de nanotechnologie à l'Université de Bologne (Italie). Il est titulaire d'un doctorat en biochimie et de biophysique de l'Université de Padoue (Italie), une master en physique de l'Université de Gênes (Italie), et un diplôme en électronique de l'Institut National de Technologie à Albenga (Italie). Ses intérêts scientifiques sont sur les phénomènes électriques de films nano-bio-structuré, et comprennent CMOS conception de biopuces à base de protéines et de l'ADN. Le long de sa carrière, il a publié 7 livres, l'un comme auteur avec Springer sur les interfaces Bio/CMOS et, plus récemment, un manuel de bioélectronique avec La prestigieuse Cambridge University Press. Il a également publié plus de 250 articles scientifiques et est l'auteur de 13 brevets. Il est maintenant chef rédacteur du Journal IEEE Sensors; il est également fondateur et chef rédacteur du Journal BioNanoScience par Springer, et rédacteur adjoint de IEEE Transactions on Circuits and Biomedical Systems. Il est membre du IEEE Sensors Council et de son comité exécutif. Il était membre du Conseil des gouverneurs de la IEEE Circuits And Systems Society (CASS). Il a été nommé IEEE conférencier émérite pour les années 2017-2019 pour le Conseil IEEE Sensors, et de la société CASS pour les années 2013-2014. Son travail a reçu plusieurs reconnaissances internationales: plusieurs Top-25 Hottest-articles (2004, 2005, 2008, 2009, et deux fois en 2012) publiés dans des journaux internationales très fort impact telles que Biosensors and Bioelectronics, Sensors And Actuators B, IEEE Sensors, et Thin Solid Films; un Award à une conference de l'OTAN en 1996 pour la contribution originale à la physique de la conductivité à électron unique dans les nano-particules; six "Best Paper Awards" pour des articles présentés à la conférence IEEE Sensors Conference en 2019 (Montreal), IEEE NGCAS en 2017 (Genoa), MOBIHEALTH en 2016 (Milan), IEEE PRIME en 2015 (Glasgow), en 2010 (Berlin) et en 2009 (Cork), un prix de la meilleure affiche au rencontre annuel de Nanotera en 2011 (Berne), et un prix de la meilleure affiche au NanoEurope Symposium en 2009 (Rapperswil). De 1997 à 2000, il a été membre d'un comité international au ELETTRA Synchrotron à Trieste. De 2000 à 2003, il était responsable scientifique d'un Programme national de recherche (PNR) dans le dépôt de nanobiotechnologie. Il était un expert internationalement estimé du comité d'évaluation de l'Académie de Finlande dans un programme de recherche pour les années 2010-2013. Il a été le président général (General Chair) de la Conférence IEEE BioCAS 2014, le premier conférence internationale dans le domaine des circuits et des systèmes pour les applications biomédicales.
Dario FloreanoProf. Dario Floreano is director of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology Lausanne (EPFL). Since 2010, he is the founding director of the Swiss National Center of Competence in Robotics, a research program that brings together more than 20 labs across Switzerland. Prof. Floreano holds an M.A. in Vision, an M.S. in Neural Computation, and a PhD in Robotics. He has held research positions at Sony Computer Science Laboratory, at Caltech/JPL, and at Harvard University. His main research interests are Robotics and A.I. at the convergence of biology and engineering. Prof. Floreano made pioneering contributions to the fields of evolutionary robotics, aerial robotics, and soft robotics. He served in numerous advisory boards and committees, including the Future and Emerging Technologies division of the European Commission, the World Economic Forum Agenda Council, the International Society of Artificial Life, the International Neural Network Society, and in the editorial committee of several scientific journals. In addition, he helped spinning off two drone companies (senseFly.com and Flyability.com) and a non-for-profit portal on robotics and A.I. (RoboHub.org). Books
Manuale sulle Reti Neurali, il Mulino (in Italian), 1996 (first edition), 2006 (second edition)Evolutionary Robotics, MIT Press, 2000
Bio-Inspired Artificial Intelligence, MIT Press, 2008
Flying Insects and Robots, Springer Verlag, 2010
Babak FalsafiBabak is a Professor in the School of Computer and Communication Sciences and the founding director of the EcoCloud, an industrial/academic consortium at EPFL investigating scalable data-centric technologies. He has made numerous contributions to computer system design and evaluation including a scalable multiprocessor architecture which was prototyped by Sun Microsystems (now Oracle), snoop filters and memory streaming technologies that are incorporated into IBM BlueGene/P and Q and ARM cores, and computer system performance evaluation methodologies that have been in use by AMD, HP and Google PerKit . He has shown that hardware memory consistency models are neither necessary (in the 90's) nor sufficient (a decade later) to achieve high performance in multiprocessor systems. These results eventually led to fence speculation in modern microprocessors. His latest work on workload-optimized server processors laid the foundation for the first generation of Cavium ARM server CPUs, ThunderX. He is a recipient of an NSF CAREER award, IBM Faculty Partnership Awards, and an Alfred P. Sloan Research Fellowship. He is a fellow of IEEE and ACM.
Kamiar AminianKamiar Aminian received the M.S. degree in electrical engineering in 1982, the Ph.D degree in biomedical engineering in 1989 and the Postgraduate degree on technical computing in 1993 from Ecole Polytechnique Fédérale de Lausanne (EPFL). He was assistant professor (1994-1996) with Sharif University of Technology (Tehran). He joint EPFL in 1996 where he is currently Professor of medical instrumentation and the director of the Laboratory of Movement Analysis and Measurement in the Institute of Bioengineering of EPFL. His research interests include methodologies for human movement monitoring and analysis in real world conditions mainly based on wearable technologies and inertial sensors with emphasis on gait, physical activity and sport. His research aims to perform outcome evaluation in orthopaedics, to improve motor function and intervention programs in aging and patients with movement disorders and pain, and to identify metrics of performance in sport science.
Kamiar Aminian is a member of the International Society of Posture and Gait Research, the Institute of Electrical and Electronics Engineers, the European Society of Movement Analysis in Adults and Children, the Prevention of fall Network Europe, the Intentional Society of Biomechanics and the President of the 3D analysis of the human movement group. He is author or co-author of more than 450 scientific papers published in reviewed journals and presented at international conferences and holds 10 patents related to medical devices.
Full CV
ORCID
Edouard BugnionEdouard Bugnion joined EPFL in 2012, where his focus is on datacenter systems. His areas of interest include operating systems, datacenter infrastructure (systems and networking), and computer architecture. Before joining EPFL, Edouard spent 18 years in the US, where he studied at Stanford and co-founded two startups: VMware and Nuova Systems (acquired by Cisco). At VMware from 1998 until 2005, he played many roles including CTO. At Nuova/Cisco from 2005 until 2011, he helped build the core engineering team and became the VP/CTO of Ciscos Server, Access, and Virtualization Technology Group, a group that brought to market Ciscos Unified Computing System (UCS) platform for virtualized datacenters. Prof. Bugnion is a Fellow of the ACM. Together with his colleagues, he received the ACM Software System Award for VMware 1.0 in 2009. His paper Disco: Running Commodity Operating Systems on Scalable Multiprocessors" received a Best Paper Award at SOSP '97 and was entered into the ACM SIGOPS Hall of Fame Award in 2008. At EPFL, he received the OSDI 2014 Best Paper Award for his work on the IX dataplane operating system
Jean-Yves Le BoudecJean-Yves Le Boudec is full professor at EPFL and fellow of the IEEE. He graduated from Ecole Normale Superieure de Saint-Cloud, Paris, where he obtained the Agregation in Mathematics in 1980 (rank 4) and received his doctorate in 1984 from the University of Rennes, France. From 1984 to 1987 he was with INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department. In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises Network Department. In 1994 he joined EPFL as associate professor. His interests are in the performance and architecture of communication systems. In 1984, he developed analytical models of multiprocessor, multiple bus computers. In 1990 he invented the concept called "MAC emulation" which later became the ATM forum LAN emulation project, and developed the first ATM control point based on OSPF. He also launched public domain software for the interworking of ATM and TCP/IP under Linux. He proposed in 1998 the first solution to the failure propagation that arises from common infrastructures in the Internet. He contributed to network calculus, a recent set of developments that forms a foundation to many traffic control concepts in the internet. He earned the Infocom 2005 Best Paper award, with Milan Vojnovic, for elucidating the perfect simulation and stationarity of mobility models, the 2008 IEEE Communications Society William R. Bennett Prize in the Field of Communications Networking, with Bozidar Radunovic, for the analysis of max-min fairness and the 2009 ACM Sigmetrics Best Paper Award, with Augustin Chaintreau and Nikodin Ristanovic, for the mean field analysis of the age of information in gossiping protocols. He is or has been on the program committee or editorial board of many conferences and journals, including Sigcomm, Sigmetrics, Infocom, Performance Evaluation and ACM/IEEE Transactions on Networking. He co-authored the book "Network Calculus" (2001) with Patrick Thiran and is the author of the book "Performance Evaluation of Computer and Communication Systems" (2010).