Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows visualization of the protein under a fluorescence microscope when it is bound by a secondary antibody that has a conjugated fluorophore. ICC allows researchers to evaluate whether or not cells in a particular sample express the antigen in question. In cases where an immunopositive signal is found, ICC also allows researchers to determine which sub-cellular compartments are expressing the antigen.
Immunocytochemistry differs from immunohistochemistry in that the former is performed on samples of intact cells that have had most, if not all, of their surrounding extracellular matrix removed. This includes individual cells that have been isolated from a block of solid tissue, cells grown within a culture, cells deposited from suspension, or cells taken from a smear. In contrast, immunohistochemical samples are sections of biological tissue, where each cell is surrounded by tissue architecture and other cells normally found in the intact tissue.
Immunocytochemistry is a technique used to assess the presence of a specific protein or antigen in cells (cultured cells, cell suspensions) by use of a specific antibody, which binds to it, thereby allowing visualization and examination under a microscope. It is a valuable tool for the determination of cellular contents from individual cells. Samples that can be analyzed include blood smears, aspirates, swabs, cultured cells, and cell suspensions.
There are many ways to prepare cell samples for immunocytochemical analysis. Each method has its own strengths and unique characteristics so the right method can be chosen for the desired sample and outcome.
Cells to be stained can be attached to a solid support to allow easy handling in subsequent procedures. This can be achieved by several methods: adherent cells may be grown on microscope slides, coverslips, or an optically suitable plastic support.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Axones dans un ganglion de souris, vue par immunofluorescence. L'immunohistochimie (IHC) est une méthode de localisation de protéines dans les cellules d'une coupe de tissu, par la détection d'antigènes au moyen d'anticorps. L'immunohistochimie exploite le fait qu'un anticorps se lie spécifiquement à des antigènes dans les tissus biologiques. Les anticorps peuvent être d'origine polyclonale ou monoclonale, les anticorps monoclonaux étant plus spécifiques par essence.
In biochemistry, immunostaining is any use of an antibody-based method to detect a specific protein in a sample. The term "immunostaining" was originally used to refer to the immunohistochemical staining of tissue sections, as first described by Albert Coons in 1941. However, immunostaining now encompasses a broad range of techniques used in histology, cell biology, and molecular biology that use antibody-based staining methods.
vignette|Des cardiomyocytes en culture, marqués par immunofluorescence. En bleu, le noyau des cellules. En vert, les filaments d'actine. L’immunofluorescence est une technique d’immunomarquage, qui utilise des anticorps ainsi que des fluorochromes. L'immunofluorescence permet de révéler une protéine spécifique directement dans la cellule, par émission de fluorescence. Elle permet donc de déterminer non seulement la présence, ou l'absence d'une protéine, mais aussi sa localisation dans la cellule, ou le tissu analysé.
The full understanding of cellular functions requires information about protein numbers for various biomolecular assemblies and their dynamics, which can be partly accessed by super-resolution fluorescence microscopy. Yet, many protein assemblies and cellu ...
The application of microfluidics in the field of surface-based assays and more specifically, the spatial molecular profiling of tumor tissues has gained a lot of interest, especially with the increased interest in personalized medicine and targeted therapy ...
EPFL2023
,
Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocy ...