Concept

Paradoxe de Burali-Forti

Résumé
En mathématiques, le paradoxe de Burali-Forti, paru en 1897, désigne une construction qui conduit dans certaines théories des ensembles ou théories des types trop naïves à une antinomie, c’est-à-dire que la théorie est contradictoire (on dit aussi incohérente ou inconsistante). Dit brièvement, il énonce que, comme on peut définir la borne supérieure d'un ensemble d'ordinaux, si l'ensemble de tous les ordinaux existe, on peut définir un ordinal supérieur strictement à tous les ordinaux, d'où une contradiction. L'argument utilise donc la notion d'ordinal, c’est-à-dire essentiellement celle de bon ordre : il est plus technique que le paradoxe de Russell, bien que son argument ne soit pas si éloigné de ce dernier qui est plus simple à comprendre et à formaliser. Cependant, le paradoxe de Burali-Forti est le premier des paradoxes de la théorie des ensembles à être publié, six ans avant le paradoxe de Russell, et Georg Cantor en fait état dans sa correspondance, ainsi que du paradoxe du plus grand cardinal (dit paradoxe de Cantor), dans les mêmes années. Par ailleurs, le paradoxe de Burali-Forti met directement en jeu la notion d'ordre, et non celle d'appartenance (même si aujourd'hui ces deux notions coïncident pour les ordinaux tels qu'ils sont définis en théorie des ensembles). Ainsi l'incohérence de certaines théories a été établie en dérivant directement le paradoxe de Burali-Forti. C'est ainsi que John Barkley Rosser a démontré en 1942 l'inconsistance d'une des premières versions des New Foundations de Willard Van Orman Quine Le paradoxe utilise la notion d'ordinal, une généralisation de la notion de nombre entier naturel, en tant qu'il représente un bon ordre. À tout bon ordre on associe un et un seul ordinal qui a la « même » structure d'ordre. Les entiers sont les ordinaux finis. L'ensemble des entiers naturels est bien ordonné, et son ordinal est noté usuellement ω. La notion de nombre ordinal diffère de celle de nombre cardinal dès que l'on passe à l'infini (des ordinaux infinis distincts peuvent avoir même cardinal).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.