La projection cartographique est un ensemble de techniques géodésiques permettant de représenter une surface non plane (surface de la Terre, d'un autre corps céleste, du ciel, ...) dans son ensemble ou en partie sur la surface plane d'une carte.
L'impossibilité de projeter le globe terrestre sur une surface plane sans distorsion (Theorema egregium) explique que diverses projections aient été inventées, chacune ayant ses avantages. Le choix d'une projection et le passage d'une projection à une autre comptent parmi les difficultés mathématiques que les cartographes ont dû affronter. L'informatique a apporté des outils de calcul puissants pour traiter ces problèmes.
Le terme de projection ne doit pas être compris dans le sens de projection géométrique (projection centrale ou perspective, projection orthogonale) mais comme une transformation mathématique faisant correspondre des points du globe et des points du plan. Il est probable que le terme de projection ait été utilisé en référence aux premières représentations planes (stéréographique ou gnomonique) qui sont effectivement des projections centrales.
Cette référence à une transformation géométrique est souvent source d'erreur. C'est pourquoi, le terme, trompeur, de «projection cartographique» est parfois remplacé par celui de «transformation plane» ou «représentation plane».
D'un point de vue mathématique, une projection permet d'établir entre la surface de la Terre et le plan (ou la
surface développable) une correspondance telle que :
et
où désignent des coordonnées planes, la latitude, la longitude et des fonctions qui sont continues partout sur l'ensemble de départ sauf sur un petit nombre de lignes et de points (tels que les pôles). Il existe donc une infinité de solutions. Les mathématiciens ne se sont pas privés d'en trouver, et on en connaît plus de 200.
La Terre a une forme irrégulière. Une projection s'appuie sur une sphère ou un ellipsoïde de révolution qui sont des modèles plus ou moins proches de la forme patatoïde réelle.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Examine le rôle des données satellitaires dans les études sur la pollution atmosphérique, portant sur des sujets tels que la profondeur optique des aérosols, les techniques de mesure par satellite et l'analyse des données sur les incendies.
La projection de Mercator ou projection Mercator est une projection cartographique de la Terre, dite «cylindrique», tangente à l'équateur du globe terrestre sur une carte plane formalisée par le géographe flamand Gerardus Mercator, en 1569. Elle s'est imposée comme le planisphère de référence dans le monde grâce à sa précision pour les voyages marins. Ce n'est pas, stricto sensu, une projection centrale : le point de latitude φ n'est pas envoyé, comme on pourrait s'y attendre, sur un point d'ordonnée proportionnelle à tan(φ) mais sur un point d'ordonnée proportionnelle à ln[tan(φ/2 + π/4)].
thumb|upright=1.25|La taille et la forme des cercles ne varient pas sur une sphère. thumb|upright=1.25|Cercles déformés (forme et taille) sur une projection de Mollweide. L’indicatrice de Tissot est une forme géométrique (un cercle ou une ellipse) permettant d'apprécier le degré de déformation d'un système de projection cartographique. Cet indicateur a été inventé par le cartographe français Nicolas Auguste Tissot.
In cartography, an equivalent, authalic, or equal-area projection is a map projection that preserves relative area measure between any and all map regions. Equivalent projections are widely used for thematic maps showing scenario distribution such as population, farmland distribution, forested areas, and so forth, because an equal-area map does not change apparent density of the phenomenon being mapped. By Gauss's Theorema Egregium, an equal-area projection cannot be conformal.
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS).It offers an introduction to GIS that does not require prior compu
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS).It offers an introduction to GIS that does not require prior compu
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly mani ...
Nature Portfolio2024
3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumpti ...
WILEY2023
,
This paper presents a novel hybrid framework for generating and updating a synthetic population. We call it hybrid because it combines model-based and data-driven approaches. Existing generators produce a snapshot of synthetic data that becomes outdated ov ...