Résumé
Un organolithien, ou simplement lithien, est un composé organométallique présentant une liaison carbone–lithium. Ce sont des réactifs importants en synthèse organique couramment utilisés pour transférer leur chaîne carbonée ou leur atome de lithium à travers une addition nucléophile ou une déprotonation. On utilise les organolithiens dans l'industrie pour l'amorçage de réactions de polymérisation anionique permettant de produire de nombreux élastomères, ainsi qu'en synthèse asymétrique dans l'industrie pharmaceutique. Le méthyllithium , le n-butyllithium et le phényllithium sont des exemples d'organolithiens. Fichier:Metyllithium.png | {{Centrer|[[Méthyllithium]].}} Fichier:BuLi is.svg | {{Centrer|[[n-Butyllithium|''n''-Butyllithium]].}} Fichier:Phenyllithium.svg | {{Centrer|[[Phényllithium]].}} En raison de la grande différence d'électronégativité entre les atomes de carbone et de lithium, la liaison C–Li est fortement ionique. La nature polaire de cette liaison fait des organolithiens de bons nucléophiles ainsi que des bases fortes. De nombreux organolithiens sont disponibles sur le marché pour usage de laboratoire, distribués dans des solvants aprotiques. Ce sont des composés très réactifs, susceptibles d'être également pyrophoriques. vignette|Tétramère de sec-butyllithium. La plupart des alkyllithiens simples et les amidures de lithium les plus courants sont disponibles sur le marché dans divers solvants et à diverses concentrations. Ils peuvent également être préparés au laboratoire par différentes méthodes. Les sections suivantes en présentent quelques-unes. La réduction d'halogénoalcanes par du lithium métallique permet de produire des alkyllithiens et aryllithiens simples : R–X + 2 Li → R–Li + Li–X. La préparation industrielle des organolithiens à l'aide de cette méthode fait intervenir le chlorure d'alkyle avec du lithium métallique contenant de 0,5 à 2 % de sodium. La réaction est fortement exothermique. Le sodium amorce l'addition radicalaire et augmente la vitesse de réaction.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (16)
CH-335: Asymmetric synthesis and retrosynthesis
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
CH-233: Organic functions and reactions I
Le cours se focalisera sur les composés carbonyles: leur structures, réactivités, et leurs transformations; la réactivité des énols/énolates et leurs réactions fondamentales. L'importance de la compré
CH-435: Asymmetric catalysis for fine chemicals synthesis
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
Afficher plus