We consider the problem of testing graph cluster structure: given access to a graph G = (V, E), can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a generali ...
Object detection is a significant challenge in Computer Vision and has received a lot of attention in the field. One such challenge addressed in this thesis is the detection of polygonal objects, which are prevalent in man-made environments. Shape analysis ...
The main goal of this paper is to formalize and explore a connection between chromatic properties of graphs defined by geometric representations and competitivity analysis of on-line algorithms. This connection became apparent after the recent construction ...
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free fam ...
A family of sets in the plane is simple if the intersection of any subfamily is arc-connected, and it is pierced by a line L if the intersection of any member with L is a nonempty segment. It is proved that the intersection graphs of simple families of com ...
We consider the problem of partitioning the node set of a graph into p cliques and k stable sets, namely the (p,k)-coloring problem. Results have been obtained for general graphs \cite{hellcomp}, chordal graphs \cite{hellchordal} and cacti for the case whe ...