Concept

Propriété de relèvement des homotopies

Publications associées (5)

Cyclic $A_\infty$-algebras and cyclic homology

We provide a new description of the complex computing the Hochschild homology of an -unitary -algebra as a derived tensor product such that: (1) there is a canonical morphism from it to the complex computing the cyclic homology of that was introduced by Ko ...
2023

Towards an (∞,2)-category of homotopy coherent monads in an ∞-cosmos

Dimitri Zaganidis

This thesis is part of a program initiated by Riehl and Verity to study the category theory of (infinity,1)-categories in a model-independent way. They showed that most models of (infinity,1)-categories form an infinity-cosmos K, which is essentially a cat ...
EPFL2017

Homotopy Excision And Cellularity

Jérôme Scherer, Kay Remo Werndli

Consider a push-out diagram of spaces C B, construct the homotopy push-out, and then the homotopy pull-back of the diagram one gets by forgetting the initial object A. We compare the difference between A and this homotopy pull-back. This difference ...
Annales Inst Fourier2016

Cellular Homotopy Excision

Kay Remo Werndli

There is a classical "duality" between homotopy and homology groups in that homotopy groups are compatible with homotopy pullbacks (every homotopy pullback gives rise to a long exact sequence in homotopy), while homology groups are compatible with homotopy ...
EPFL2016

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.