The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. It is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature. The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K−1⋅m−3.
The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K−1⋅kg−1) times the density of the substance (in kg/L, or g/mL).
This quantity may be convenient for materials that are commonly measured by volume rather than mass, as is often the case in engineering and other technical disciplines. The volumetric heat capacity often varies with temperature, and is different for each state of matter. While the substance is undergoing a phase transition, such as melting or boiling, its volumetric heat capacity is technically infinite, because the heat goes into changing its state rather than raising its temperature.
The volumetric heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated (volumetric heat capacity at constant pressure) than when is heated in a closed vessel that prevents expansion (volumetric heat capacity at constant volume).
If the amount of substance is taken to be the number of moles in the sample (as is sometimes done in chemistry), one gets the molar heat capacity (whose SI unit is joule per kelvin per mole, J⋅K−1⋅mol−1).
The volumetric heat capacity is defined as
where is the volume of the sample at temperature , and is the amount of heat energy needed to raise the temperature of the sample from to . This parameter is an intensive property of the substance.
Since both the heat capacity of an object and its volume may vary with temperature, in unrelated ways, the volumetric heat capacity is usually a function of temperature too. It is equal to the specific heat of the substance times its density (mass per volume) , both measured at the temperature .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours met en relation les différents niveaux de structuration de la matière avec les propriétés mécaniques, thermiques, électriques, magnétiques et optiques des matériaux.
Des travaux pratiques en
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Une introduction à la science des matériaux appliquée aux matériaux de construction courants, en particulier le béton et les métaux. Description de leur fabrication, leurs comportements mécanique et t
Couvre les propriétés physiques du bois, y compris le comportement de séchage, le point de saturation des fibres, la stabilité dimensionnelle, la teneur en humidité, le rétrécissement, la résistance, les propriétés thermiques et la décomposition.
La capacité thermique (anciennement capacité calorifique) d'un corps est une grandeur qui mesure la chaleur qu'il faut lui transférer pour augmenter sa température d'un kelvin. Inversement, elle permet de quantifier la possibilité qu'a ce corps d'absorber ou de restituer de la chaleur au cours d'une transformation pendant laquelle sa température varie. Elle s'exprime en joules par kelvin (). C'est une grandeur extensive : plus la quantité de matière est importante, plus la capacité thermique est grande.
La capacité thermique molaire est donnée par la quantité d'énergie apportée par échange thermique pour élever d'une unité la température d'une mole d'une substance. Dans le Système international l'unité est donc le joule par mole kelvin (). La détermination des valeurs des capacités thermiques des substances relève de la calorimétrie. Remarques : on définit également des capacités thermiques massiques (valeurs rapportées à l'unité de matière, c'est-à-dire une mole) ; il convient de distinguer les capacités à volume constant et les capacités à pression constante (la différence étant particulièrement importante pour les gaz).
Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot.
In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent prope ...
In this study, a flexible, free-standing Fe -doped CoP nanoarrays electrode for superior lithium -ion storage has been successfully fabricated. The electrode combines the advantages of a Fe -doping and a flexible carbon cloth (CC) support, resulting in a h ...
Academic Press Inc Elsevier Science2024
The time-honored Allen -Feldman theory of heat transport in glasses is generally assumed to predict a finite value for the thermal conductivity, even if it neglects the anharmonic broadening of vibrational normal modes. We demonstrate that the harmonic app ...