The mushroom bodies or corpora pedunculata are a pair of structures in the brain of arthropods, including insects and crustaceans, and some annelids (notably the ragworm Platynereis dumerilii). They are known to play a role in olfactory learning and memory. In most insects, the mushroom bodies and the lateral horn are the two higher brain regions that receive olfactory information from the antennal lobe via projection neurons. They were first identified and described by French biologist Félix Dujardin in 1850. Mushroom bodies are usually described as neuropils, i.e., as dense networks of neuronal processes (dendrite and axon terminals) and glia. They get their name from their roughly hemispherical calyx, a protuberance that is joined to the rest of the brain by a central nerve tract or peduncle. Most of our current knowledge of mushroom bodies comes from studies of a few species of insect, especially the cockroach Periplaneta americana, the honey bee Apis mellifera, the locust and the fruit fly Drosophila melanogaster. Studies of fruit fly mushroom bodies have been particularly important for understanding the genetic basis of mushroom body functioning, since their genome has been sequenced and a vast number of tools to manipulate their gene expression exist. In the insect brain, the peduncles of the mushroom bodies extend through the midbrain. They are mainly composed of the long, densely packed nerve fibres of the Kenyon cells, the intrinsic neurons of the mushroom bodies. These cells have been found in the mushroom bodies of all species that have been investigated, though their number varies. Fruit flies, for example, have around 2,500, whereas cockroaches have about 200,000. A locust brain dissection to expose the central brain and carry out electro-physiology recordings can be seen here. Historically, it was believed that only insects had mushroom bodies, because they were not present in crabs and lobsters.
Sahand Jamal Rahi, Kseniia Korchagina
Jiri Vanicek, Alan Scheidegger, Nikolay Golubev