Résumé
A clonogenic assay is a cell biology technique for studying the effectiveness of specific agents on the survival and proliferation of cells. It is frequently used in cancer research laboratories to determine the effect of drugs or radiation on proliferating tumor cells as well as for titration of Cell-killing Particles (CKPs) in virus stocks. It was first developed by T.T. Puck and Philip I. Marcus at the University of Colorado in 1955. Although this technique can provide accurate results, the assay is time-consuming to set up and analyze and can only provide data on tumor cells that can grow in culture. The word "clonogenic" refers to the fact that these cells are clones of one another. The experiment involves three major steps: The treatment is applied to a sample of cells. The cells are "plated" in a tissue culture vessel and allowed to grow. The colonies produced are fixed, stained, and counted. At the conclusion of the experiment, the percentage of cells that survived the treatment is measured. A graphical representation of survival versus drug concentration or dose of ionizing radiation is called a cell survival curve. For Cell-killing Particle assays, the surviving fraction of cells is used to approximate the Poisson Distribution of virus particles amongst cells and therefore determine the number of CKPs encountered by each cell. Any type of cell could be used in an experiment, but since the goal of these experiments in oncological research is the discovery of more effective cancer treatments, human tumor cells are a typical choice. The cells either come from prepared "cell lines," which have been well-studied and whose general characteristics are known, or from a biopsy of a tumor in a patient. The cells are put in petri dishes or in plates which contain several circular "wells." Particular numbers of cells are plated depending on the experiment; for an experiment involving irradiation it is usual to plate larger numbers of cells with increasing dose of radiation.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (2)

Exploring the potency of normal and pathological human thymic epithelial cells

Tiphaine Mélodie Chantal Arlabosse

Thymic epithelial cells (TECs) are organised in a unique 3D network that is critical for the development of efficient and self-tolerant T-cells. We report for the first time that the human thymus of a
EPFL2017