Concept

Particular point topology

In mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology. If X is countably infinite, the topology on X is called the countable particular point topology. If X is uncountable, the topology on X is called the uncountable particular point topology. A generalization of the particular point topology is the closed extension topology. In the case when X \ {p} has the discrete topology, the closed extension topology is the same as the particular point topology. This topology is used to provide interesting examples and counterexamples. Closed sets have empty interior Given a nonempty open set every is a limit point of A. So the closure of any open set other than is . No closed set other than contains p so the interior of every closed set other than is . Path and locally connected but not arc connected For any x, y ∈ X, the function f: [0, 1] → X given by is a path. However since p is open, the of p under a continuous injection from [0,1] would be an open single point of [0,1], which is a contradiction. Dispersion point, example of a set with p is a dispersion point for X. That is X \ {p} is totally disconnected. Hyperconnected but not ultraconnected Every non-empty open set contains p, and hence X is hyperconnected. But if a and b are in X such that p, a, and b are three distinct points, then {a} and {b} are disjoint closed sets and thus X is not ultraconnected. Note that if X is the Sierpiński space then no such a and b exist and X is in fact ultraconnected. Compact only if finite. Lindelöf only if countable.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (3)
Récepteurs sans fil : modèle temporel discret et QAM
Couvre le calcul du modèle temporel discret pour les récepteurs sans fil et la modulation d'amplitude en quadrature (QAM).
Intégration de formes différentielles
Couvre l'intégration de formes différentielles sur des variétés lisses, y compris les concepts de formes fermées et exactes.
Espaces Normés
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Publications associées (17)

Design and Simulation of a Wide-Bandwidth CMUTs Array with Dual-Mixed radii and Multi Operating Modes

Yu Bai, Zhengwen Jiang, Yihe Zhao, Jie Li, Zichen Liu

A capacitive micromachined ultrasonic transducers (CMUTs) array with dual-mixed radii is designed to improve bandwidth and realize multi-modes operating for immersed ultrasonic applications. The two-size (TS) CMUT array is composed of two sub-arrays with d ...
IEEE2021

Unique decomposition of homogeneous languages and application to isothetic regions

Nicolas René Jean Ninin

A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group G(n) on the collection of ho ...
2019

On the existence of ordinary triangles

Sebastian Urban Stich, Radoslav Fulek, Márton Naszódi

Let P be a finite point set in the plane. A \emph{c-ordinary triangle} in P is a subset of P consisting of three non-collinear points such that each of the three lines determined by the three points contains at most c points of P. Motivated by a question o ...
Elsevier2017
Afficher plus
Concepts associés (15)
Excluded point topology
In mathematics, the excluded point topology is a topology where exclusion of a particular point defines openness. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is then the excluded point topology on X. There are a variety of cases which are individually named: If X has two points, it is called the Sierpiński space. This case is somewhat special and is handled separately.
Topologie de Sierpiński
In mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Finite topological space
In mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Let be a finite set.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.