Concept

National Optical Astronomy Observatory

Résumé
The National Optical Astronomy Observatory (NOAO) was the United States national observatory for ground-based nighttime ultraviolet-optical-infrared (OUVIR) astronomy. The National Science Foundation (NSF) funded NOAO to provide forefront astronomical research facilities for US astronomers. Professional astronomers from any country in the world could apply to use the telescopes operated by NOAO under the NSF's "open skies" policy. NOAO was operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the NSF. Its headquarters in Tucson, Arizona, were co-located with the headquarters of the National Solar Observatory. The budget for NOAO during the 2017 fiscal year was nearly $23 million. NOAO was founded in 1984 to join the operations of the Kitt Peak National Observatory in the United States with the Cerro Tololo Inter-American Observatory in Chile. On October 1, 2019, NOAO merged its operations with the Gemini Observatory and the Vera C. Rubin Observatory to form NSF's NOIRLab. NOAO operated world class research telescopes in both the northern and southern hemispheres. These telescopes, located at Kitt Peak and Cerro Tololo in the US and Chile respectively, remain in operation under the auspices of the NSF’s NOIRLab. The two sites allow US astronomers to make observations over the entire sky. Instrumentation includes optical to near infrared wavelength (0.4 to 5 micrometers) cameras and spectrometers. Cerro Tololo Inter-American Observatory CTIO has a base and office facility in the seaside town of La Serena, Chile. The CTIO telescopes are located some 70 km inland in the foothills of the Chilean Andes. Access to the observatory is made through the picturesque Elqui Valley. Telescopes at CTIO include the Victor M. Blanco Telescope (named after astronomer Victor Manuel Blanco in 1995) which employs a wide-field of view CCD (Charge-coupled device), a wide field of view near infrared imager (1-2.5 micrometers) and a multi-object fiber fed spectrograph working at visible wavelengths.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.