Explore les techniques d'indexation, les fichiers inversés, les modèles map-reduce et l'utilisation de trie pour une récupération d'informations efficace.
Couvre l'extraction de phrases clés, une méthode pour extraire des phrases importantes du texte pour la synthèse, l'indexation et la recherche de documents.
Plongez dans le traitement de grandes collections de textes numériques, en explorant les régularités cachées, la réutilisation du texte et l'analyse TF-IDF.
Couvre les bases de la récupération d'informations à l'aide de modèles d'espace vectoriel et d'exercices pratiques sur la rétroaction de pertinence et la numérisation de la liste de publication.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.