In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.
The nilpotent elements of a commutative ring R form an ideal of R, called the nilradical of R; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero.
A quotient ring R/I is reduced if and only if I is a radical ideal.
Let be nilradical of any commutative ring . There is a natural functor of category of commutative rings into category of reduced rings and it is left adjoint to the inclusion functor of into . The bijection is induced from the universal property of quotient rings.
Let D be the set of all zero-divisors in a reduced ring R. Then D is the union of all minimal prime ideals.
Over a Noetherian ring R, we say a finitely generated module M has locally constant rank if is a locally constant (or equivalently continuous) function on Spec R. Then R is reduced if and only if every finitely generated module of locally constant rank is projective.
Subrings, products, and localizations of reduced rings are again reduced rings.
The ring of integers Z is a reduced ring. Every field and every polynomial ring over a field (in arbitrarily many variables) is a reduced ring.
More generally, every integral domain is a reduced ring since a nilpotent element is a fortiori a zero-divisor. On the other hand, not every reduced ring is an integral domain. For example, the ring Z[x, y]/(xy) contains x + (xy) and y + (xy) as zero-divisors, but no non-zero nilpotent elements. As another example, the ring Z × Z contains (1, 0) and (0, 1) as zero-divisors, but contains no non-zero nilpotent elements.
The ring Z/6Z is reduced, however Z/4Z is not reduced: The class 2 + 4Z is nilpotent.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes. A prime ideal P is said to be a minimal prime ideal over an ideal I if it is minimal among all prime ideals containing I. (Note: if I is a prime ideal, then I is the only minimal prime over it.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal.
En algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form where n is a square-free integer. So, is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but is not (because 12 = 22 × 3, with a repeated prime factor).
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscal ...
Discute de la correction des lignes tangentes et des courbes planes projectives, en explorant les applications topologiques et la structure des courbes.
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...
Given any twisting cochain t:C→A , where C is a connected, coaugmented chain coalgebra and A is an augmented chain algebra over an arbitrary commutative ring R, we construct a twisted extension of chain complexes Full-size image (1 K) of which both the wel ...