Concept

Reduced ring

Résumé
In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced. The nilpotent elements of a commutative ring R form an ideal of R, called the nilradical of R; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero. A quotient ring R/I is reduced if and only if I is a radical ideal. Let be nilradical of any commutative ring . There is a natural functor of category of commutative rings into category of reduced rings and it is left adjoint to the inclusion functor of into . The bijection is induced from the universal property of quotient rings. Let D be the set of all zero-divisors in a reduced ring R. Then D is the union of all minimal prime ideals. Over a Noetherian ring R, we say a finitely generated module M has locally constant rank if is a locally constant (or equivalently continuous) function on Spec R. Then R is reduced if and only if every finitely generated module of locally constant rank is projective. Subrings, products, and localizations of reduced rings are again reduced rings. The ring of integers Z is a reduced ring. Every field and every polynomial ring over a field (in arbitrarily many variables) is a reduced ring. More generally, every integral domain is a reduced ring since a nilpotent element is a fortiori a zero-divisor. On the other hand, not every reduced ring is an integral domain. For example, the ring Z[x, y]/(xy) contains x + (xy) and y + (xy) as zero-divisors, but no non-zero nilpotent elements. As another example, the ring Z × Z contains (1, 0) and (0, 1) as zero-divisors, but contains no non-zero nilpotent elements. The ring Z/6Z is reduced, however Z/4Z is not reduced: The class 2 + 4Z is nilpotent.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.