Résumé
Heterochromatin is a tightly packed form of DNA or condensed DNA, which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role in the expression of genes. Because it is tightly packed, it was thought to be inaccessible to polymerases and therefore not transcribed; however, according to Volpe et al. (2002), and many other papers since, much of this DNA is in fact transcribed, but it is continuously turned over via RNA-induced transcriptional silencing (RITS). Recent studies with electron microscopy and OsO4 staining reveal that the dense packing is not due to the chromatin. Constitutive heterochromatin can affect the genes near itself (e.g. position-effect variegation). It is usually repetitive and forms structural functions such as centromeres or telomeres, in addition to acting as an attractor for other gene-expression or repression signals. Facultative heterochromatin is the result of genes that are silenced through a mechanism such as histone deacetylation or Piwi-interacting RNA (piRNA) through RNAi. It is not repetitive and shares the compact structure of constitutive heterochromatin. However, under specific developmental or environmental signaling cues, it can lose its condensed structure and become transcriptionally active. Heterochromatin has been associated with the di- and tri -methylation of H3K9 in certain portions of the human genome. H3K9me3-related methyltransferases appear to have a pivotal role in modifying heterochromatin during lineage commitment at the onset of organogenesis and in maintaining lineage fidelity. Chromatin is found in two varieties: euchromatin and heterochromatin. Originally, the two forms were distinguished cytologically by how intensely they get stained – the euchromatin is less intense, while heterochromatin stains intensely, indicating tighter packing. Heterochromatin is usually localized to the periphery of the nucleus.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (18)
Concepts associés (42)
Caryotype
Le caryotype (ou caryogramme) est l'arrangement standard de l'ensemble des chromosomes d'une cellule, à partir d'une prise de vue microscopique. Les chromosomes sont photographiés et disposés selon un format standard : par paire et classés par taille, et par position du centromère. On réalise des caryotypes dans le but de détecter des aberrations chromosomiques (telles que la trisomie 21) ou d'identifier certains aspects du génome de l'individu, comme le sexe (XX ou XY). Notons qu'un caryotype se présente sous forme de photographie.
Expression génétique
L'expression des gènes, encore appelée expression génique ou expression génétique, désigne l'ensemble des processus biochimiques par lesquels l'information héréditaire stockée dans un gène est lue pour aboutir à la fabrication de molécules qui auront un rôle actif dans le fonctionnement cellulaire, comme les protéines ou les ARN. Même si toutes les cellules d'un organisme partagent le même génome, certains gènes ne sont exprimés que dans certaines cellules, à certaines périodes de la vie de l'organisme ou sous certaines conditions.
DNA methylation
DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.
Afficher plus
Cours associés (1)
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Séances de cours associées (13)
Structure et compaction de la chromatine
Explore la structure de la chromatine, les nucléosomes et les niveaux de compactage de la chromatine observés par microscopie électronique à transmission.
Neuroépigénétique : mécanismes moléculaires et implications cognitives
Enquête sur la façon dont le comportement maternel façonne la réponse au stress grâce à l'épigénétique et discute des influences génétiques par rapport à l'épigénétique sur les traits.
Neuroépigénétique: Structure et régulation de la chromatine
Explore la neuroépigénétique, en se concentrant sur la structure de la chromatine, la régulation et l'héritage épigénétique dans le neurodéveloppement.
Afficher plus