Soit G un groupe (au sens mathématique). Les éléments de G qui appartiennent à tout sous-groupe maximal de G forment un sous-groupe de G, qu'on appelle le sous-groupe de Frattini de G et qu'on note Φ(G). Si G admet au moins un sous-groupe maximal, on peut parler de l'intersection de ses sous-groupes maximaux et Φ(G) est égal à cette intersection. Si G n'a pas de sous-groupe maximal, Φ(G) est égal à G tout entier.
On appelle élément superflu (ou encore élément mou) d'un groupe G tout élément de G possédant la propriété suivante : toute partie X de G telle que X∪{x} soit une partie génératrice de G est elle-même une partie génératrice de G.
Le sous-groupe de Frattini de G est un sous-groupe caractéristique de G.Justification. Cela se déduit facilement du fait que l'image d'un sous-groupe maximal de G par un automorphisme de G est encore un sous-groupe maximal de G.
Soit G un groupe dont le sous-groupe de Frattini est de type fini. (C'est le cas, par exemple, si G est fini.) Si H est un sous-groupe de G tel que G = HΦ(G), alors H = G.Justification. Puisque Φ(G) est de type fini, nous pouvons choisir des éléments x, ... , x qui engendrent Φ(G). L'hypothèse G = HΦ(G) entraîne que H∪{x, ... , x} est une partie génératrice de G. Puisque x appartient à Φ(G) et est donc un élément superflu de G, il en résulte que H∪{x, ... , x} est une partie génératrice de G. De proche en proche, on en tire que H est une partie génératrice de G. Puisque H est un sous-groupe de G, ceci revient à dire que H = G.
La propriété précédente reste vraie si on y remplace l'hypothèse « Φ(G) est de type fini » par l'hypothèse « G est de type fini » : Soit G un groupe de type fini. (C'est le cas, par exemple, si G est fini.) Si H est un sous-groupe de G tel que G = HΦ(G), alors H = G.Justification. Supposons que H ne soit pas égal à G tout entier. Du fait que G est de type fini, ceci entraîne qu'il existe un sous-groupe maximal M de G qui contient H. Alors M contient à la fois H et (par définition de Φ(G)) Φ(G), donc M contient HΦ(G), ce qui contredit l'hypothèse G = HΦ(G).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, et plus précisément en algèbre, un p-groupe, pour un nombre premier p donné, est un groupe (fini ou infini) dont tout élément a pour ordre une puissance de p. Les p-sous-groupes de Sylow d'un groupe fini sont un exemple important de p-groupes. Tout sous-groupe et tout quotient d'un p-groupe est un p-groupe. Réciproquement, si H est un p-sous-groupe normal d'un groupe G et si le quotient G/H est un p-groupe, alors G est un p-groupe. On peut tirer du point précédent qu'un produit semi-direct de deux p-groupes est un p-groupe.
En théorie des groupes, les groupes nilpotents forment une certaine classe de groupes contenue dans celle des groupes résolubles et contenant celle des groupes abéliens. Les groupes nilpotents apparaissent dans la théorie de Galois et dans la classification des groupes de Lie ou des groupes algébriques linéaires. Soit G un groupe noté multiplicativement, d'élément neutre e. Si A et B sont deux sous-groupes de G, on note [A,B] le sous-groupe engendré par les commutateurs de la forme [x,y] pour x dans A et y dans B.
A finitely generated subgroup F of a real Lie group G is said to be Diophantine if there is beta > 0 such that non-trivial elements in the word ball B-Gamma(n) centered at 1 is an element of F never approach the identity of G closer than broken vertical ba ...
London Mathematical Society, Cambridge2015
All the results in this work concern (finite) p-groups. Chapter 1 is concerned with classifications of some classes of p-groups of class 2 and there are no particularly new results in this chapter, which serves more as an introductory chapter. The "geometr ...
EPFL2009
Let p be an arbitrary prime and let P be a finite p-group. The general objective of this paper is to obtain refined information on the homotopy type of the poset of all non-trivial elementary abelian subgroups of P, ordered by inclusion, and the poset of a ...