In mathematics, particularly in group theory, the Frattini subgroup of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group {e} or a Prüfer group, it is defined by . It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements" (see the "non-generator" characterization below). It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.
is equal to the set of all non-generators or non-generating elements of G. A non-generating element of G is an element that can always be removed from a generating set; that is, an element a of G such that whenever X is a generating set of G containing a, is also a generating set of G.
is always a characteristic subgroup of G; in particular, it is always a normal subgroup of G.
If G is finite, then is nilpotent.
If G is a finite p-group, then . Thus the Frattini subgroup is the smallest (with respect to inclusion) normal subgroup N such that the quotient group is an elementary abelian group, i.e., isomorphic to a direct sum of cyclic groups of order p. Moreover, if the quotient group (also called the Frattini quotient of G) has order , then k is the smallest number of generators for G (that is, the smallest cardinality of a generating set for G). In particular a finite p-group is cyclic if and only if its Frattini quotient is cyclic (of order p). A finite p-group is elementary abelian if and only if its Frattini subgroup is the trivial group, .
If H and K are finite, then .
An example of a group with nontrivial Frattini subgroup is the cyclic group G of order , where p is prime, generated by a, say; here, .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p. Abelian p-groups are also called p-primary or simply primary. A finite group is a p-group if and only if its order (the number of its elements) is a power of p.
In mathematics, specifically group theory, a nilpotent group G is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}. Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable.
A finitely generated subgroup F of a real Lie group G is said to be Diophantine if there is beta > 0 such that non-trivial elements in the word ball B-Gamma(n) centered at 1 is an element of F never approach the identity of G closer than broken vertical ba ...
Let p be an arbitrary prime and let P be a finite p-group. The general objective of this paper is to obtain refined information on the homotopy type of the poset of all non-trivial elementary abelian subgroups of P, ordered by inclusion, and the poset of a ...
All the results in this work concern (finite) p-groups. Chapter 1 is concerned with classifications of some classes of p-groups of class 2 and there are no particularly new results in this chapter, which serves more as an introductory chapter. The "geometr ...