Résumé
En relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées. D'après les théorèmes sur les singularités de Roger Penrose et Stephen Hawking, une telle singularité est un point au-delà duquel une géodésique ne peut être prolongée. La description de telles régions n'est pas possible dans le cadre de la relativité générale, ce qui n'empêche pas cette dernière d'être en mesure de prédire que de telles configurations peuvent se former dans l'univers. Par exemple, la formation d'un trou noir va de pair avec l'apparition d'une singularité gravitationnelle en son sein. L'univers observable est issu d'une phase dense et chaude, le Big Bang. Cette phase dense et chaude pourrait elle aussi être issue d'une singularité gravitationnelle. Le comportement d'une singularité gravitationnelle ne pouvant pas être décrit à l'aide des connaissances physiques actuelles, certains chercheurs ont émis l'hypothèse (qui par certains côtés apparaît comme un vœu pieux) que les singularités gravitationnelles ne sont jamais en mesure d'affecter l'espace environnant. Ceci est possible si elles sont entourées d'un horizon des évènements, comme cela se produit dans un trou noir. L'hypothèse de la censure cosmique suppose donc que les singularités gravitationnelles (à l'exception éventuelle de celle du Big Bang) sont toujours cachées de l'extérieur par un horizon. Cette hypothèse, promue entre autres par Stephen Hawking dans le courant des années 1970, En relativité générale, une singularité n'appartient pas à l'espace-temps. D'un point de vue topologique, on distingue la singularité ponctuelle de la singularité annulaire.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.