Giuseppe Carleo is a computational quantum physicist, whose main focus is the development of advanced numerical algorithms tostudy challenging problems involving strongly interacting quantum systems.He is best known for the introduction of machine learning techniques to study both equilibrium and dynamical properties,based on a neural-network representations of quantum states, as well for the time-dependent variational Monte Carlo method.He earned a Ph.D. in Condensed Matter Theory from the International School for Advanced Studies (SISSA) in Italy in 2011.He held postdoctoral positions at the Institut d’Optique in France and ETH Zurich in Switzerland, where he alsoserved as a lecturer in computational quantum physics.In 2018, he joined the Flatiron Institute in New York City in 2018 at the Center for Computational Quantum Physics (CCQ), working as a Research Scientist and project leader, and also leading the development of the open-source project NetKet.Since September 2020 he is an assistant professor at EPFL, in Switzerland, leading the Computational Quantum Science Laboratory (CQSL).
De nationalité italienne, Vincenzo Savona est né en 1969. Il effectue ses études de physique à lEcole normale supérieure de Pise et à lUniversité de Pise. Puis il entreprend une thèse de doctorat à lInstitut de physique théorique de lEPFL. Il effectue des recherches post-doctorales à lEPFL, puis à lInstitut de physique de lUniversité Humboldt de Berlin. En 2002, il revient à lEPFL pour y constituer son groupe de recherche, bénéficiant dun subside «professeur boursier» du Fonds national suisse de la recherche scientifique. En 2006, il est nommé professeur assistant tenure-track à lEPFL et intègre le NCCR de photonique quantique. En 2010 il est nommé professeur associé. Actuellement, il dirige le Laboratoire de physique théorique des nanosystèmes.
I did my PhD at the Institut d'Optique under the direction of Philippe Bouyer and Alain Aspect, before moving to ETHZ in the group of Tilman Esslinger, first as a post-doc then as a senior scientist. There I developed in particular the method allowing for a quantum simulation of nano-electronic devices with ultracold quantum gases.Since september 2016, I hold the Fondation Sandoz chair in physics of quantum gases at EPFL. There, my group has developed the first cold atoms machine combining Fermi gases with cavity-quantum electrodynamics. We use it to explore new ways of measuring and manipulating quantum matter.
Tobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). I obtained my master's degree in Physics at the University of Salento, Lecce (Italy) in February 2011. During 2006-2011, I have also been a student of Scuola Superiore ISUFI (SSI). SSI is one of six schools of excellence established in Italy to develop the intellectual capital in technological and social sciences. I conducted an external Master thesis project during an 8 months internship in the Quantum Transport Group at TU Delft, under the supervision of Prof. L.M.K. Vandersypen. There, I implemented the Quantum Point Contact Radio-Frequency Reflectometry technique, which allows increasing the single-shot electron spin readout bandwidth and is currently routinely used in the group.I obtained my Ph.D. degree in February 2016, in the Spin Qubits group of Prof. L.M.K. Vandersypen at the Kavli Institute of Nanoscience-Qutech (TU Delft). During my Ph.D. I have been leading the Si/SiGe spin qubits project, collaborating with the M. Eriksson Group at Wisconsin University. In parallel, I have been working on other different projects, in particular with GaAs depletion quantum dots, high impedance superconducting resonators, and surface acoustic wave resonators. I have been working as a Postdoc fellow in the group of Prof. A. Wallraff (Quantum Device Lab) at ETH Zurich. My main project, in collaboration with the group of Prof. K. Ensslin and Prof. T. Ihn, consisted in integrating semiconductor and superconductor technologies. Realizing a well-controlled interface between the semiconductor and superconductor-based quantum information technologies may allow harnessing the best of both device architectures, for example by providing an interface between strongly coupled charge state and high coherence spin states. Furthermore, it enables the possibility to explore light/matter hybridization in a class of solid-state systems and regimes that are new in the context of quantum optics.From June 2019 till September 2020, I have been a Senior Researcher at Microsoft Station Q Copenhagen and at the Center for Quantum Devices in Copenhagen, focusing on developing semiconductor-superconducting hybrid hardware for topologically protected quantum computation.Since October 2020, I am a tenure track Assistant Professor of Physics in the School of Basic Sciences at the EPFL where I founded the Hybrid Quantum Circuit (HQC) laboratory.