Françoise Gisou van der Goot GrunbergGisou van der Goot est responsable du Laboratoire de Biologie Cellulaire et Membranaire et co-fondatrice de l'Institut dInfectiologie, à la Faculté des Sciences de la Vie de l'EPFL.Depuis 2021, Prof. van der Goot est Vice-présidente pour la transformation responsable, moteur du changement de l’EPFL vers une culture inclusive et un campus durable. De 2014 à 2020, Prof. van der Goot a occupé la fonction de Doyenne de cette même Faculté.Avant sa nomination à l'EPFL, en 2006, elle était Cheffe de Groupe à la Faculté des Sciences de lUniversité de Genève (UNIGE), puis Professeure Associée à la Faculté de Médecine. Prof. van der Goot a d'abord obtenu un diplôme dIngénieur de l'Ecole Centrale de Paris avant dentamer une thèse en Biophysique Moléculaire au CEA de Saclay (Université de Paris VI), suivie dun séjour postdoctoral au Laboratoire Européen de Biologie Moléculaire (EMBL) à Heidelberg (Allemagne). Différentes distinctions lui ont été décernées, dont, en 2001, le Prix Young Investigator de l'EMBO (Organisation européenne de Biologie Moléculaire), puis, en 2005, le soutien par le programme international du Howard Hughes Medical Institute (HHMI, Etats-Unis); en 2009, elle a été la première femme à obtenir le Prix Marcel Benoist. La même année, elle est élue membre de lEMBO. Les domaines dexpertise du Prof. van der Goot incluent les mécanismes moléculaires et cellulaires des toxines bactériennes, l'organisation des membranes (des mammifères) et la biologie des organelles. Prof. van der Goot est membre du conseil scientifique de diverses organisations telles que le Fonds National Suisse de la Recherche Scientifique (SNF), le Conseil Suisse de la Science et de la Technologie (CSST) et le Conseil Européen de la Recherche (ERC).
Carl PetersenCarl Petersen studied physics as a bachelor student in Oxford (1989-1992). During his PhD studies under the supervision of Prof. Sir Michael Berridge in Cambridge (1992-1996), he investigated cellular and molecular mechanisms of calcium signalling. In his first postdoctoral period (1996-1998), he joined the laboratory of Prof. Roger Nicoll at the University of California San Francisco (UCSF) to investigate synaptic transmission and plasticity in the hippocampus. During a second postdoctoral period, in the laboratory of Prof. Bert Sakmann at the Max Planck Institute for Medical Research in Heidelberg (1999-2003), he began working on the primary somatosensory barrel cortex, investigating cortical circuits and sensory processing. Carl Petersen joined the Brain Mind Institute of the Faculty of Life Sciences at the Ecole Polytechnique Federale de Lausanne (EPFL) in 2003, setting up the Laboratory of Sensory Processing to investigate the functional operation of neuronal circuits in awake mice during quantified behavior. In 2019, Carl Petersen became the Director of the EPFL Brain Mind Institute, with the goal to promote quantitative multidisciplinary research into neural structure, function, dysfunction, computation and therapy through technological advances.
Horst VogelHorst Vogel est né en 1948 à Würzburg, Allemagne. Après ses études en chimie, il obtient le diplôme de chimie en 1974 de l'Université de Würzburg.Il entreprend ensuite un travail de doctorat au Max-Planck Institut für Biophysikalische Chemie de Göttingen, et obtient en 1978 le grade de docteur ès sciences de l'Université de Göttingen. De 1978 à 1983 il effectue des recherches au Max-Planck Institut für Biologie à Tübingen et en 1984, il rejoint le Biocentre à Bâle où il travaille jusqu'en 1989, effectuant une année au Karolinska Institute à Stockholm. En 1989, Horst Vogel rejoint l'institut de chimie physique de l'EPFL où il dirige un groupe travaillant dans les domaines de la biophysique et de la bioélectronique.
Depuis le 1er octobre 1994 il est profeseur en chimie physique des polymères et membranes au Département de chimie de EPFL. Ses intérêts de recherche sont l'étude de la structure et de la dynamique de récepteurs membranaires et l'auto-assemblage des biomolécules aux interfaces pour développer de nouveaux biocapteurs dans le domaine de micro- et nanotechnologie. Il enseigne les sciences du vivant, la biophysique et biochimie, et des chapitres concernant la biotechnologie.
Dipl. in Chemistry1974-Univ. Würzburg, DE
Ph.D.-1978-MPI für Biophys. Chemie, Göttingen, DE
Philippe RenaudPhilippe Renaud is Professor at the Microsystem Laboratory (LMIS4) at EPFL. He is also the scientific director of the EPFL Center of MicroNanoTechnology (CMI). His main research area is related to micronano technologies in biomedical applications (BioMEMS) with emphasis on cell-chips, nanofluidics and bioelectronics. Ph. Renaud is invloved in many scientifics papers in his research area. He received his diploma in physics from the University of Neuchâtel (1983) and his Ph.D. degree from the University of Lausanne (1988). He was postdoctoral fellow at University of California, Berkeley (1988-89) and then at the IBM Zürich Research Laboratory in Switzerland (1990-91). In 1992, he joined the Sensors and Actuators group of the Swiss Center for Electronics and Microtechnology (CSEM) at Neuchâtel, Switzerland. He was appointed assistant professor at EPFL in 1994 and full professor in 1997. In summer 1996, he was visiting professor at the Tohoku University, Japan. Ph. Renaud is active in several scientific committee (scientific journals, international conferences, scientific advisory boards of companies, PhD thesis committee). He is also co-founder of the Nanotech-Montreux conference. Ph. Renaud is committed to valorization of basic research through his involvement in several high-tech start-up companies.
Wulfram GerstnerWulfram Gerstner is Director of the Laboratory of Computational Neuroscience LCN at the EPFL. His research in computational neuroscience concentrates on models of spiking neurons and spike-timing dependent plasticity, on the problem of neuronal coding in single neurons and populations, as well as on the link between biologically plausible learning rules and behavioral manifestations of learning. He teaches courses for Physicists, Computer Scientists, Mathematicians, and Life Scientists at the EPFL. After studies of Physics in Tübingen and at the Ludwig-Maximilians-University Munich (Master 1989), Wulfram Gerstner spent a year as a visiting researcher in Berkeley. He received his PhD in theoretical physics from the Technical University Munich in 1993 with a thesis on associative memory and dynamics in networks of spiking neurons. After short postdoctoral stays at Brandeis University and the Technical University of Munich, he joined the EPFL in 1996 as assistant professor. Promoted to Associate Professor with tenure in February 2001, he is since August 2006 a full professor with double appointment in the School of Computer and Communication Sciences and the School of Life Sciences. Wulfram Gerstner has been invited speaker at numerous international conferences and workshops. He has served on the editorial board of the Journal of Neuroscience, Network: Computation in Neural Systems',
Journal of Computational Neuroscience', and `Science'.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Nico de RooijNico de Rooij is Professor Emeritus of EPFL and previous Vice-President of CSEM SA. He was Professor of Microengineering at EPFL and Head of the Sensors, Actuators and Microsystems Laboratory (
SAMLAB
) from 2009 to 2016. At
CSEM SA
he was responsible for the EPFL CSEM coordination from 2012 to 2016. His research activities include the design, micro fabrication and application of miniaturized silicon based sensors, actuators, and microsystems. He authored and coauthored over 400 published
journal papers
in these areas.
He was Professor at the University of Neuchatel and Head of the Sensors, Actuators and Microsystems Laboratory (SAMLAB) from 1982 to 2008. Since October 1990 till October 1996 and again from October 2002 until June 2008, he has been the director of the Institute of Microtechnology of the University of Neuchatel (IMT UniNE). He lectured at the Swiss Federal Institute of Technology, Zurich (ETHZ), and since 1989, he has been a part-time professor at the Swiss Federal Institute of Technology, Lausanne (EPFL). He has been appointed Vice-President of the CSEM SA in February 2008 and headed the newly created Microsystems Technology Division of CSEM SA, from 2008 until 2012. He was Director of EPFL's Institute of Microengineering (EPFL STI IMT) from 2009 to 2012, following the transfer of IMT Uni-NE to EPFL.
Dr. de Rooij is a Fellow of the IEEE and Fellow of the Institute of Physics (UK). He recieved the IEEE
Jun-Ichi Nishizawa Gold Medal
, the Schlumberger Prize as well as the
MNE Fellow Award 2016
. He was awarded a Visiting Investigatorship Program (VIP) in MEMS/NEMS Systems by the
A*STAR Science and Engineering Council (SERC)
, Singapore, hosted by
SIMTech
, for the period 2005-2008.
Prof. de Rooij is Corresponding Member of the
Royal Netherlands Academy of Arts and Sciences
and Individual Member of the
Swiss Academy of Engineering Sciences
.
He has been serving on the Editorial Boards of the
IEEE/ASME Journal of Microelectromechanical Systems (IEEE JMEMS)
,
the IEEE proceedings
,
the Journal of Micromechanics and Microengineering, JM & M,
,
the Sensors and Actuators
,and
Sensors and Materials
. He was Member of the Information and Communication technology jury of the BBVA Foundation Frontiers of Knowledge Awards from 2009 to 2012.
Dr. de Rooij is (or was) Member of numerous international steering committees of conference series as well as
technical paper review panels including the steering committee of the International Conference on Solid-State
Sensors and Actuators and of Eurosensors. He acted as European Program Chairman of Transducers '87 and General Chairman of Transducers '89, Montreux, Switzerland.
He has supervised more than 70 Ph.D. students, who have successfully completed their
Ph.D. thesis.
He received his M.Sc. degree in physical chemistry from the State University of Utrecht, The Netherlands, in 1975, and a Ph.D. degree from Twente University of Technology, The Netherlands, in 1978. From 1978 to 1982, he worked at the Research and Development Department of Cordis Europa N.V., The Netherlands.
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Pierre MagistrettiPierre J. Magistretti is an internationally-recognized neuroscientist who has made significant contributions in the field of brain energy metabolism. His group has discovered some of the cellular and molecular mechanisms that underlie the coupling between neuronal activity and energy consumption by the brain.
This work has considerable ramifications for the understanding of the origin of the signals detected with the current functional brain imaging techniques used in neurological and psychiatric research (see for example Magistretti et al, Science, 283: 496 497, 1999). He is the author of over 100 articles published in peer-reviewed journals.
He has given over 80 invited lectures at international meetings or at universities in Europe and North America, including the 2000 Talairach Lecture at the Functional Mapping of the Human Brain Conference. In November 2000 he has been a Mc Donnel Visiting Scholar at Washington University School of Medicine.
Pierre J. Magistretti is the President-Elect (2002 2004) of the Federation of European Neuroscience Societies (FENS) which has a membership of over 15000 European neuroscientists. He has been first president of the Swiss Society for Neuroscience (1997-1999) and the first Chairman of the Department of Neurosciences of the University of Lausanne (1996 1998).
Pierre J. Magistretti is Professor of Physiology (since 1988) at the University of Lausanne Medical School. He has been Vice-Dean of the University of Lausanne Medical School from 1996 to 2000. Pierre Magistretti, is Director of the Brain Mind Institute at EPFL and Director of the Center for Psychiatric Neuroscience of the University of Lausanne and CHUV. He is also Director of the NCCR SYNAPSY "the synaptic bases of mental diseases".
POSITIONS AND HONORS
MAIN POSITION HELD
1988-2004 Professor of Physiology, University of Lausanne Medical School
1996-2000 Vice-Dean for Preclinical Departments, University of Lausanne Medical School
2001-2004 Chairman, Department of Physiology, University of Lausanne Medical School
2004-present Professor and Director, Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne Medical School and Hospitals (UNIL-CHUV) (Joint appointment with EPFL)
2005-2008 Professor and Co-Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne (Joint appointment with UNIL-CHUV)
2007-present Chairman of the Scientific Advisory Board of Centre dImagerie Biomédicale (CIBM), an Imaging Consortium of the Universities, University Hospitals of Lausanne and Geneva and of Ecole Polytechnique Fédérale de Lausanne
2008-present Professor and Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne Joint appointment with UNIL-CHUV)
2010-present Director, National Center for Competence in Research (NCCR)
The synaptic bases of mental diseases of the Swiss National Science Foundation
2010-present Secretary General, International Brain Research Organization (IBRO)
MAIN HONORS AND AWARDS
1997 Recipient of the Theodore-Ott Prize of the Swiss Academy of Medical Sciences
2001 Elected Member of Academia Europaea
2001 Elected Member of the Swiss Academy of Medical Sciences, ad personam
2002 Recipient of the Emil Kraepelin Guest Professorship, Max Planck Institute für Psychiatry, Münich
2006 Elected Professor at Collège de France, Paris, International Chair 2007-2008
2009 Goethe Award for Psychoanalytic Scholarship, Canadian Psychological Association
2011 Camillo Golgi Medal Award, Golgi Fondation
2011 Elected Member of the American College of NeuroPsychopharmacology (ACNP)
Hubert GiraultEducation: 1979 - Engineering diploma from Grenoble Institute of Technology. FRANCE. 1982 - PhD- Department of Chemistry, University of Southampton. Thesis entitled : Interfacial studies using drop image processing techniques. Positions : 1982 - 1984 SERC Research Fellow. University of Southampton. 1984 - 1985 CNRS Research Fellow. University of Southampton. 1985 - 1992 Lecturer in Physical Chemistry, University of Edinburgh. 1992 - Professor of Physical Chemistry, Ecole Polytechnique Fédérale de Lausanne. 2011 - 2014 Dean of Bachelor and Master studies Hubert Girault is the author of 2 textbooks, the co-author of about 600 scientific publications with more than 20'000 citations and the co-inventor of more than 15 patents. During his academic career, he has supervised 70 PhD students. 30 alumni of his laboratory are now Professors. Honours: Faraday medal 2006, Royal Society of Chemistry, Fellow of the International Society of Electrochemistry 2007, Reilley Award 2015. Fellow of the Electrochemical Society (USA), Shikata International medal, Polarography Society of Japan. Associate editor of Chemical Science