Fugitive gas emissions are emissions of gas (typically natural gas, which contains methane) to atmosphere or groundwater which result from oil and gas or coal mining activity. In 2016, these emissions, when converted to their equivalent impact of carbon dioxide, accounted for 5.8% of all global greenhouse gas emissions.
Most fugitive emissions are the result of loss of well integrity through poorly sealed well casings due to geochemically unstable cement. This allows gas to escape through the well itself (known as surface casing vent flow) or via lateral migration along adjacent geological formations (known as gas migration). Approximately 1-3% of methane leakage cases in unconventional oil and gas wells are caused by imperfect seals and deteriorating cement in wellbores. Some leaks are also the result of leaks in equipment, intentional pressure release practices, or accidental releases during normal transportation, storage, and distribution activities.
Emissions can be measured using either ground-based or airborne techniques. In Canada, the oil and gas industry is thought to be the largest source of greenhouse gas and methane emissions, and approximately 40% of Canada's emissions originate from Alberta. Emissions are largely self-reported by companies. The Alberta Energy Regulator keeps a database on wells releasing fugitive gas emissions in Alberta, and the British Columbia Oil and Gas Commission keeps a database of leaky wells in British Columbia. Testing wells at the time of drilling was not required in British Columbia until 2010, and since then 19% of new wells have reported leakage problems. This number may be a low estimate, as suggested by fieldwork completed by the David Suzuki Foundation. Some studies have shown a range of 6-30% of wells suffer gas leakage.
Canada and Alberta have plans for policies to reduce emissions, which may help combat climate change. Costs related to reducing emissions are very location-dependent and can vary widely.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Fugitive emissions are leaks and other irregular releases of gases or vapors from a pressurized containment – such as appliances, storage tanks, pipelines, wells, or other pieces of equipment – mostly from industrial activities. In addition to the economic cost of lost commodities, fugitive emissions contribute to local air pollution and may cause further environmental harm. Common industrial gases include refrigerants and natural gas, while less common examples are perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride.
Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% (360 million tons) of methane released globally was from human activities, while natural sources contributed about 40% (230 million tons). Reducing methane emissions by capturing and utilizing the gas can produce simultaneous environmental and economic benefits.
Gas venting, more specifically known as natural-gas venting or methane venting, is the intentional and controlled release of gases containing alkane hydrocarbons - predominately methane - into earth's atmosphere. It is a widely used method for disposal of unwanted gases which are produced during the extraction of coal and crude oil. Such gases may lack value when they are not recyclable into the production process, have no export route to consumer markets, or are surplus to near-term demand.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer p
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Couvre les facteurs de vision spéculaire, l'échange radiatif, le transfert d'énergie et les méthodes d'intégration numérique dans le rayonnement thermique.
Explore la physique des semi-conducteurs sous des champs électriques élevés, en discutant du transport des porteurs, des processus de recombinaison et de l'impact de l'injection.
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer-Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for tran ...
Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated ...
Elsevier2024
,
Given the patchy nature of gas plumes and the slow response of conventional gas sensors, the use of mobile robots for Gas Source Localization (GSL) tasks presents significant challenges. These aspects increase the difficulties in obtaining gas measurement ...