Concepts associés (12)
Liquid fluoride thorium reactor
The liquid fluoride thorium reactor (LFTR; often pronounced lifter) is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine. Molten-salt-fueled reactors (MSRs) supply the nuclear fuel mixed into a molten salt.
Generation IV reactor
Generation IV reactors (Gen IV) are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost.
Thorium-based nuclear power
Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential; it is difficult to weaponize the uranium-233/232 and plutonium-238 isotopes that are largely consumed in thorium reactors.
Nuclear reactor physics
Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons.
Cycle du combustible nucléaire au thorium
Le cycle du combustible au thorium décrit l'utilisation du thorium 232, un élément abondant dans la nature, comme matériau fertile permettant d'alimenter un réacteur nucléaire. Le cycle du thorium présente de nombreux avantages théoriques par rapport à un cycle à l'uranium : le thorium est trois à quatre fois plus abondant que l'uranium, notamment dans les pays qui sont susceptibles de construire des réacteurs dans le futur, comme l'Inde, le Brésil et la Turquie.
Réacteur nucléaire à sels fondus
Le réacteur nucléaire à sels fondus (RSF ; molten salt reactor, MSR) est un concept de réacteur nucléaire dans lequel le combustible nucléaire se présente sous forme liquide, dissous dans du sel fondu (à ) qui joue à la fois le rôle de caloporteur et de barrière de confinement. Le réacteur peut être modéré par du graphite (produisant des neutrons thermiques) ou sans modérateur (neutrons rapides). Le concept a été étudié en laboratoire pendant les années 1960, puis délaissé dans les années 1970 faute de financement et malgré des résultats probants.
Liquide de refroidissement
Un liquide de refroidissement est un fluide caloporteur utilisé, dans un circuit généralement fermé, dans le but d'évacuer la chaleur d'un système qui en produit plus qu'il ne peut en évacuer naturellement (par exemple, une réaction exothermique forte). Souvent, il s'agit d'eau mélangée à un additif, comme l'éthylène glycol ou le propylène glycol, permettant d'augmenter sa température d'ébullition et/ou d'augmenter sa résistance au gel. Ces additifs, souvent indispensables, nuisent parfois aux capacités calorifiques du fluide.
Passive nuclear safety
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
Cycle du combustible nucléaire
thumb|Schéma simplifié d'un cycle du combustible nucléaire : (1) extraction-enrichissement-fabrication (2) retraitement après usage (3) stockage ou (4) recyclage. Le cycle du combustible nucléaire (ou chaîne du combustible nucléaire) est l'ensemble des opérations de fourniture de combustible aux réacteurs nucléaires, puis de gestion du combustible irradié, depuis l'extraction du minerai jusqu'à la gestion des déchets radioactifs.
Surgénération
La surgénération ou surrégénération est la capacité d'un réacteur nucléaire à produire plus d'isotopes fissiles qu'il n'en consomme, en transmutant des isotopes fertiles en isotopes fissiles. Le seul isotope fissile disponible en tant que ressource naturelle sur Terre est l'uranium 235, directement exploitable dans le cycle du combustible nucléaire. La surgénération permet théoriquement de valoriser en tant que combustible nucléaire l'ensemble des matières fertiles tels l'uranium 238, qui représente plus de 99 % de l'uranium naturel, et le thorium, lui-même trois fois plus abondant que l'uranium.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.