Chambre d'ionisationthumb|Dispositif expérimental avec une chambre d'ionisation. Une chambre d'ionisation est un détecteur de particules qui repère le passage d’une particule en mesurant la charge totale des électrons et des ions produits lors de l’ionisation du milieu gazeux par la particule. Elles se sont développées après l'établissement de la théorie de Bragg–Gray en 1935. Pour récupérer les électrons et les ions avant qu’ils ne se recombinent en atomes, la présence d’un champ électrique est requise pour les séparer et les faire dériver vers des électrodes.
Imagerie médicaleL'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
MKS system of unitsThe MKS system of units is a physical system of measurement that uses the metre, kilogram, and second (MKS) as base units. The modern International System of Units (SI) was originally created as a formalization of the MKS system, and although the SI has been redefined several times since then and is now based entirely on fundamental physical constants, it still closely approximates the original MKS system for most practical purposes. By the mid-19th century, there was a demand by scientists to define a coherent system of units.
Dose fractionationDose fractionation effects are utilised in the treatment of cancer with radiation therapy. When the total dose of radiation is divided into several, smaller doses over a period of several days, there are fewer toxic effects on healthy cells. This maximizes the effect of radiation on cancer and minimizes the negative side effects. A typical fractionation scheme divides the dose into 30 units delivered every weekday over six weeks. Experiments in radiation biology have found that as the absorbed dose of radiation increases, the number of cells which survive decreases.
Rayon Xvignette|upright|Une des premières radiographies, prise par Wilhelm Röntgen. alt=Rayon X des poumons humains|vignette|189x189px|Rayon X des poumons humains. Les rayons X sont une forme de rayonnement électromagnétique à haute fréquence constitué de photons dont l'énergie varie d'une centaine d'eV (électron-volt), à plusieurs MeV. Ce rayonnement a été découvert en 1895 par le physicien allemand Wilhelm Röntgen, qui a reçu pour cela le premier prix Nobel de physique ; il lui donna le nom habituel de l'inconnue en mathématiques, X.
SievertLe sievert (de symbole Sv) est une unité utilisée pour évaluer l'impact de la radioactivité sur le corps humain. Elle dérive du gray, qui est une unité de mesure physique, en pondérant l'effet des rayonnements par la dangerosité de ces rayonnements, d'une part, et les tissus biologiques affectés, d'autre part. Plus précisément, c'est l'unité dérivée du Système international utilisée pour mesurer une dose équivalente, une dose efficace ou un débit de dose radioactive (Sv/s, Sv/h ou Sv/an), c'est-à-dire pour évaluer quantitativement l'impact biologique d'une exposition humaine à des rayonnements ionisants.
List of metric unitsMetric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. The most widely used examples are the units of the International System of Units (SI). By extension they include units of electromagnetism from the CGS and SI units systems, and other units for which use of SI prefixes has become the norm.
Transfert linéique d'énergieLe transfert linéique d'énergie (TLE), ou transfert d'énergie linéique (TEL), Linear energy transfer (LET) en anglais, est une quantité qui décrit l'énergie transférée par une particule ionisante traversant la matière, par unité de distance. Il est exprimé en . Il varie selon la nature et l'énergie du rayonnement ionisant. Typiquement, le TLE est utilisé pour quantifier l'effet du rayonnement ionisant sur des matériaux (en électronique, biologie, physique de la matière).