Le sievert (de symbole Sv) est une unité utilisée pour évaluer l'impact de la radioactivité sur le corps humain. Elle dérive du gray, qui est une unité de mesure physique, en pondérant l'effet des rayonnements par la dangerosité de ces rayonnements, d'une part, et les tissus biologiques affectés, d'autre part. Plus précisément, c'est l'unité dérivée du Système international utilisée pour mesurer une dose équivalente, une dose efficace ou un débit de dose radioactive (Sv/s, Sv/h ou Sv/an), c'est-à-dire pour évaluer quantitativement l'impact biologique d'une exposition humaine à des rayonnements ionisants. Le sievert ne peut donc pas être utilisé pour quantifier l'exposition reçue par des animaux de laboratoire, il est remplacé dans cet usage par le gray. L'effet des rayonnements dépend d'abord de l'énergie ionisante reçue physiquement par chaque unité de masse. Le sievert est donc homogène au gray, c'est-à-dire au joule par kilogramme. Cependant, l'effet spécifique de cette énergie est traduit par deux coefficients, l'un rendant compte de l'efficacité biologique des différents rayonnements, et l'autre de l'impact biologique de l'atteinte d'un organe donné. Ces deux facteurs de pondération sont des grandeurs sans dimension, évalués par des études sur la santé et susceptibles de mise à jour. Cette unité a été nommée en hommage à Rolf Sievert, physicien suédois ayant travaillé sur la mesure des doses radioactives et sur les effets biologiques des radiations. Dans le Système international d'unités : [Gy] = [Sv] = J/kg = m/s Le sievert est donc homogène au gray, autre unité utilisée en dosimétrie, qui mesure la dose absorbée (l'énergie absorbée par unité de masse) indépendamment de son effet biologique. La dose absorbée, D, se calcule directement en grays : c'est l'énergie absorbée par unité de masse considérée. Par rapport à la dose absorbée, la dose efficace, E, tient compte de deux facteurs supplémentaires sans dimension (le facteur de pondération du rayonnement wR et le facteur de pondération tissulaire wT), qui traduisent l'effet relatif du rayonnement considéré sur l'organe considéré, par rapport à un rayonnement de référence.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (21)
Rayonnement ionisant
vignette|Pouvoir de pénétration (exposition externe).Le rayonnement alpha (constitué de noyaux d'hélium) est arrêté par une simple feuille de papier.Le rayonnement bêta (constitué d'électrons ou de positons) est arrêté par une plaque d'aluminium.Le rayonnement gamma, constitué de photons très énergétiques, est atténué (et non arrêté) quand il pénètre de la matière dense, ce qui le rend particulièrement dangereux pour les organismes vivants.Il existe d'autres types de rayonnements ionisants.
Radioactivité
vignette|Pictogramme signalant la présence de matière radioactive. (☢) vignette|La maison de Georges Cuvier, au Jardin des plantes de Paris, où Henri Becquerel découvrit la radioactivité en 1896. La radioactivité est le phénomène physique par lequel des noyaux atomiques instables (dits radionucléides ou radioisotopes) se transforment spontanément en d'autres atomes (désintégration) en émettant simultanément des particules de matière (électrons, noyaux d'hélium, neutrons) et de l'énergie (photons et énergie cinétique).
Rayonnement de fond
Le rayonnement ambiant () est le rayonnement ionisant omniprésent auquel les gens sur la planète Terre sont exposés. Ce rayonnement provient de sources naturelles et artificielles. La composition et l'intensité des deux rayonnements ambiants (naturel et artificiel) varient selon l'emplacement et l'altitude. Les matières radioactives sont présentes dans la nature. Des quantités détectables de ces matières se trouvent naturellement dans le sol, les roches, l'eau, l'air et la végétation, à partir desquels elles sont inhalées et ingérées dans le corps.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.