Matrice de HadamardUne matrice de Hadamard est une matrice carrée dont les coefficients sont tous 1 ou –1 et dont les lignes sont toutes orthogonales entre elles. Le nom retenu pour ces matrices rend hommage au mathématicien français Jacques Hadamard. Des exemples de telles matrices avaient été donnés par James Joseph Sylvester. Pour une matrice d'ordre , la propriété d'orthogonalité des colonnes peut également s'écrire sous la forme où In est la matrice identité d'ordre et t est la matrice transposée de .
Rook's graphIn graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape.
Paley constructionIn mathematics, the Paley construction is a method for constructing Hadamard matrices using finite fields. The construction was described in 1933 by the English mathematician Raymond Paley. The Paley construction uses quadratic residues in a finite field GF(q) where q is a power of an odd prime number. There are two versions of the construction depending on whether q is congruent to 1 or 3 (mod 4). Let q be a power of an odd prime.
Graphe fortement régulierEn théorie des graphes, qui est un domaine des mathématiques, un graphe fortement régulier est un type de graphe régulier. Soit G = (V,E) un graphe régulier ayant v sommets et degré k. On dit que G est fortement régulier s'il existe deux entiers λ et μ tels que Toute paire de sommets adjacents a exactement λ voisins communs. Toute paire de sommets non-adjacents a exactement μ voisins communs. Un graphe avec ces propriétés est appelé un graphe fortement régulier de type (v,k,λ,μ).
Locally linear graphIn graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Their triangles form the hyperedges of triangle-free 3-uniform linear hypergraphs and the blocks of certain partial Steiner triple systems, and the locally linear graphs are exactly the Gaifman graphs of these hypergraphs or partial Steiner systems.
Conway's 99-graph problemIn graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution.