Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Couvre un cours intensif sur l'apprentissage profond, y compris le Mark I Perceptron, les réseaux neuronaux, les algorithmes d'optimisation et les aspects de formation pratique.
Explore le but et le processus de normalisation par lots dans les réseaux neuronaux profonds, en soulignant son importance dans la stabilisation de l'entrée moyenne et la résolution du problème du gradient de fuite.
Explore les modèles Seq2Seq avec et sans mécanismes d'attention, couvrant l'architecture encodeur-décodeur, les vecteurs de contexte, les processus de décodage et les différents types de mécanismes d'attention.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.