Le problème de la mesure quantique consiste en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré. Ces problèmes sont : L'évolution de la fonction d'onde étant causale et déterministe (postulat 6), et représentant toute l'information connaissable sur un système (postulat 1), pourquoi le résultat d'une mesure quantique est-il fondamentalement indéterministe (postulat 4 et postulat 5) ? L'évolution de la fonction d'onde étant linéaire et unitaire (postulat 6), comment les superpositions quantiques peuvent-elles disparaître (postulat 5), alors que la linéarité/unitarité mène naturellement à une préservation des états superposés ? Même si ces deux problèmes sont liés, il importe de les distinguer car certaines solutions comme la décohérence apportent une réponse au problème 2, mais pas au problème 1. Le problème de la mesure a été formalisé pour la première fois par John von Neumann en 1932 dans son livre (chapitre VI). Il a été par la suite, en 1935, popularisé par Erwin Schrödinger avec son fameux « paradoxe du chat ». Depuis, ce problème a fait l'objet de nombreux débats et reste encore au l'objet de polémiques, même si des solutions ont été établies et sont acceptées par une majorité (mais pas la totalité) des physiciens. Rappelons rapidement les postulats de la mécanique quantique dont il est question dans la suite de l'article : postulat 1 : postulat de l'état quantique postulat 2 : principe de correspondance postulat 3 : postulat de la mesure postulat 4 : interprétation probabiliste postulat 5 : postulat de réduction du paquet d'onde postulat 6 : postulat de l'évolution unitaire Le problème de la mesure consiste en fait en un ensemble de problèmes, qui mettent en évidence des difficultés de corrélation entre les postulats de la mécanique quantique et le monde macroscopique tel qu'il nous apparaît ou tel qu'il est mesuré.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-436: Statistical physics IV
Noise and fluctuations play a crucial role in science and technology. This course treats stochastic methods, applying them to both classical problems and quantum systems. It emphasizes the frameworks
PHYS-453: Quantum electrodynamics and quantum optics
This course develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover historic developments (coherent states, squeezed states, quantum theo
Afficher plus
Séances de cours associées (615)
Enveloppe quantique
Explore l'enchevêtrement quantique, les inégalités de Bell et l'auto-test dans les systèmes quantiques.
Information quantique : L'expérience à double fente chez les jeunes
Explore l'expérience à double fente de Young et le comportement des particules quantiques.
Théorie de la répétition de groupe : Représentations de caractères
Explore les représentations des personnages dans la théorie de la répétition de groupe, en discutant de l'irréductibilité, de l'équivalence et des valeurs associées.
Afficher plus
Publications associées (663)

Empirical Sample Complexity of Neural Network Mixed State Reconstruction

Giuseppe Carleo, Filippo Vicentini, Haimeng Zhao

Quantum state reconstruction using Neural Quantum States has been proposed as a viable tool to reduce quantum shot complexity in practical applications, and its advantage over competing techniques has been shown in numerical experiments focusing mainly on ...
Verein Forderung Open Access Publizierens Quantenwissenschaf2024

The complexity of quantum support vector machines

Gian Florin Gentinetta, Stefan Woerner

Quantum support vector machines employ quantum circuits to define the kernel function. It has been shown that this approach offers a provable exponential speedup compared to any known classical algorithm for certain data sets. The training of such models c ...
Wien2024

Dual-frame optimization for informationally complete quantum measurements

Ivano Tavernelli

Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
2024
Afficher plus
Concepts associés (58)
Décohérence quantique
La décohérence quantique est une théorie susceptible d'expliquer la transition entre les règles physiques quantiques et les règles physiques classiques telles que nous les connaissons, à un niveau macroscopique. Plus spécifiquement, cette théorie apporte une réponse, considérée comme étant la plus complète à ce jour, au paradoxe du chat de Schrödinger et au problème de la mesure quantique. La théorie de la décohérence a été introduite par H. Dieter Zeh en 1970. Elle a reçu ses premières confirmations expérimentales en 1996.
Qubit
En informatique quantique, un qubit ou qu-bit (quantum + bit ; prononcé ), parfois écrit qbit, est un système quantique à deux niveaux, qui représente la plus petite unité de stockage d'information quantique. Ces deux niveaux, notés et selon le formalisme de Dirac, représentent chacun un état de base du qubit et en font donc l'analogue quantique du bit. Grâce à la propriété de superposition quantique, un qubit stocke une information qualitativement différente de celle d'un bit.
État quantique
L'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Afficher plus
MOOCs associés (1)
Cavity Quantum Optomechanics
Fundamentals of optomechanics. Basic principles, recent developments and applications.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.